RTC提交

This commit is contained in:
ZZX9599
2025-09-02 23:15:07 +08:00
parent 062ee6c70d
commit be5383d752

View File

@ -5,57 +5,46 @@ import aiohttp
import cv2
import numpy as np
from aiortc import RTCPeerConnection, RTCSessionDescription, RTCConfiguration
from aiortc.mediastreams import MediaStreamTrack
from ocr.ocr_violation_detector import OCRViolationDetector
from ws.ws import send_message_to_client
class VideoTrack(MediaStreamTrack):
kind = "video"
def __init__(self, max_frames=1):
super().__init__()
self.frames = asyncio.Queue(maxsize=max_frames)
async def recv(self):
return await super().recv()
async def rtc_frame_receiver(url, frame_queue, stop_event):
"""
对每帧进行检查、只要接收到 RTC 帧且队列为空、就往队列放入cv2格式的帧数据
接收RTC帧并往队列放入cv2格式的帧数据
当队列已满时直接丢弃新帧,不阻塞等待
当stop_event被设置时停止接收
"""
pc = RTCPeerConnection(RTCConfiguration(iceServers=[]))
video_track = VideoTrack()
pc.addTrack(video_track)
# 累计帧计数器
# 累计帧计数器和丢弃帧计数器
total_frames = 0
dropped_frames = 0
@pc.on("track")
async def on_track(track):
nonlocal total_frames
nonlocal total_frames, dropped_frames
if track.kind == "video":
print("接收到视频轨道、开始接收视频帧")
while not stop_event.is_set(): # 检查是否需要停止
# 接收当前帧并累计计数
frame = await track.recv()
total_frames += 1
# 转换为cv2兼容的BGR格式numpy数组
frame_cv2 = frame.to_ndarray(format='bgr24')
# 验证是否为cv2兼容格式
if isinstance(frame_cv2, np.ndarray) and frame_cv2.ndim == 3 and frame_cv2.shape[2] == 3:
total_frames += 1
# 对每帧都检查队列状态、队列为空则放入
if frame_queue.empty() and not stop_event.is_set(): # 确保还未收到停止信号
# 队列为空、放入当前cv2帧
await frame_queue.put(frame_cv2)
# 检查队列是否已满
if frame_queue.full():
# 队列已满,丢弃当前帧
dropped_frames += 1
print(f"{total_frames}帧:队列已满,丢弃该帧(累计丢弃: {dropped_frames}")
else:
# 队列非空或已收到停止信号、跳过当前帧
if not stop_event.is_set():
print(f"{total_frames}帧:队列非空、跳过该帧")
# 队列未满,放入当前帧
await frame_queue.put(frame_cv2)
print(f"{total_frames}帧:已放入队列")
else:
print("帧格式转换失败不是有效的cv2格式")
@ -67,18 +56,26 @@ async def rtc_frame_receiver(url, frame_queue, stop_event):
# 发送offer到服务器
async with aiohttp.ClientSession() as session:
print("开始向服务器发送 SDP Offer")
async with session.post(
url,
data=offer.sdp.encode(),
headers={
"Content-Type": "application/sdp",
"Content-Length": str(len(offer.sdp))
},
ssl=False
) as response:
print("已接收到服务器的响应、开始处理 SDP Answer")
answer_sdp = await response.text()
await pc.setRemoteDescription(RTCSessionDescription(sdp=answer_sdp, type='answer'))
try:
async with session.post(
url,
data=offer.sdp.encode(),
headers={
"Content-Type": "application/sdp",
"Content-Length": str(len(offer.sdp))
},
ssl=False
) as response:
if response.status == 200:
print("已接收到服务器的响应、开始处理 SDP Answer")
answer_sdp = await response.text()
await pc.setRemoteDescription(RTCSessionDescription(sdp=answer_sdp, type='answer'))
else:
print(f"服务器响应错误: {response.status}")
stop_event.set()
except Exception as e:
print(f"发送SDP Offer失败: {str(e)}")
stop_event.set()
try:
# 保持连接,直到收到停止信号
@ -87,64 +84,68 @@ async def rtc_frame_receiver(url, frame_queue, stop_event):
except KeyboardInterrupt:
print("用户中断")
finally:
print("开始关闭 RTCPeerConnection")
print(f"开始关闭 RTCPeerConnection,共接收{total_frames}帧,丢弃{dropped_frames}")
await pc.close()
print("已关闭 RTCPeerConnection")
async def frame_consumer(ip, frame_queue, stop_event):
"""
从队列中读取cv2帧并处理队列空时阻塞等待)
从队列中阻塞读取cv2帧并处理队列空时阻塞等待)
检测到违规内容后设置stop_event以终止所有任务
Args:
ip: IP地址
frame_queue: 帧队列
stop_event: 用于控制任务停止的事件
"""
# 创建OCR检测器实例
ocr_detector = OCRViolationDetector(
forbidden_words_path=r"D:\Git\bin\video\ocr\forbidden_words.txt", # 替换为实际路径
forbidden_words_path=r"D:\Git\bin\video\ocr\forbidden_words.txt",
ocr_confidence_threshold=0.5, )
while not stop_event.is_set(): # 检查是否需要停止
# 从队列中获取cv2帧队列为空时会阻塞等待新帧
current_frame = await frame_queue.get()
has_violation, words, confidences = ocr_detector.detect(current_frame)
print(has_violation)
print( words)
print( confidences)
# 输出所有检测到的违禁词
if has_violation:
print(f"测试结果:图片中共检测到 {len(words)} 个违禁词:")
response_data = {
"status": "stop",
"timestamp": datetime.now().isoformat(),
}
await send_message_to_client(ip,response_data )
for word, conf in zip(words, confidences):
print(f"- {word}(置信度:{conf:.4f}")
try:
# 阻塞等待队列中的帧
current_frame = await frame_queue.get()
# 检测到违规,设置停止事件
print("检测到违规内容准备关闭AI检测")
stop_event.set()
else:
print("测试结果:图片中未检测到违禁词")
# 进行OCR检测
has_violation, words, confidences = ocr_detector.detect(current_frame)
print(f"检测结果: {'有违规内容' if has_violation else '无违规内容'}")
print(f"检测到的词: {words}")
print(f"置信度: {confidences}")
# 标记任务完成
frame_queue.task_done()
# 输出所有检测到的违禁词
if has_violation:
print(f"测试结果:图片中共检测到 {len(words)} 个违禁词:")
response_data = {
"status": "stop",
"timestamp": datetime.now().isoformat(),
"violations": [{"word": w, "confidence": c} for w, c in zip(words, confidences)]
}
await send_message_to_client(ip, response_data)
for word, conf in zip(words, confidences):
print(f"- {word}(置信度:{conf:.4f}")
# 检测到违规,设置停止事件
print("检测到违规内容准备关闭AI检测")
stop_event.set()
# 标记任务完成,允许生产者放入新的帧
frame_queue.task_done()
except Exception as e:
print(f"处理帧时发生错误: {str(e)}")
frame_queue.task_done()
def process_webrtc_stream(ip, webrtc_url):
"""
处理WEBRTC流并持续打印OCR检测结果检测到违规后关闭
队列大小为1满时直接丢弃新帧
Args:
ip: IP地址
webrtc_url: WEBRTC服务器地址
"""
# 创建队列和停止事件
frame_queue = asyncio.Queue(maxsize=1)
# 创建队列大小为1和停止事件
frame_queue = asyncio.Queue(maxsize=1) # 只存储一帧
stop_event = asyncio.Event() # 用于控制任务停止的事件
# 定义事件循环中的主任务
@ -153,14 +154,18 @@ def process_webrtc_stream(ip, webrtc_url):
receiver_task = asyncio.create_task(rtc_frame_receiver(webrtc_url, frame_queue, stop_event))
consumer_task = asyncio.create_task(frame_consumer(ip, frame_queue, stop_event))
# 等待任一任务完成当stop_event被设置时两个任务都会退出
# 等待任务完成
await asyncio.gather(receiver_task, consumer_task)
# 确保队列处理完毕
await frame_queue.join()
try:
# 运行事件循环
asyncio.run(main_task())
except KeyboardInterrupt:
print("用户中断处理流程")
stop_event.set()
finally:
# 确保关闭所有cv2窗口
cv2.destroyAllWindows()