This commit is contained in:
2025-09-02 21:30:28 +08:00
parent df74b688fa
commit e21432c6a1
4 changed files with 219 additions and 62 deletions

119
ocr/config/1.yaml Normal file
View File

@ -0,0 +1,119 @@
Global:
text_score: 0.5
use_det: true
use_cls: true
use_rec: true
min_height: 30
width_height_ratio: 8
max_side_len: 2000
min_side_len: 30
return_word_box: false
return_single_char_box: false
font_path: null
EngineConfig:
onnxruntime:
intra_op_num_threads: -1
inter_op_num_threads: -1
enable_cpu_mem_arena: false
cpu_ep_cfg:
arena_extend_strategy: "kSameAsRequested"
use_cuda: true # 改为true以启用CUDA
cuda_ep_cfg:
device_id: 0
arena_extend_strategy: "kNextPowerOfTwo"
cudnn_conv_algo_search: "EXHAUSTIVE"
do_copy_in_default_stream: true
use_dml: false
dm_ep_cfg: null
use_cann: false
cann_ep_cfg:
device_id: 0
arena_extend_strategy: "kNextPowerOfTwo"
npu_mem_limit: 21474836480 # 20 * 1024 * 1024 * 1024
op_select_impl_mode: "high_performance"
optypelist_for_implmode: "Gelu"
enable_cann_graph: true
openvino:
inference_num_threads: -1
performance_hint: null
performance_num_requests: -1
enable_cpu_pinning: null
num_streams: -1
enable_hyper_threading: null
scheduling_core_type: null
paddle:
cpu_math_library_num_threads: -1
use_npu: false
npu_id: 0
use_cuda: true # 改为true以启用CUDA
gpu_id: 0
gpu_mem: 500
torch:
use_cuda: true # 已经是true
gpu_id: 0
Det:
engine_type: "torch"
lang_type: "ch"
model_type: "mobile"
ocr_version: "PP-OCRv4"
task_type: "det"
model_path: null
model_dir: null
limit_side_len: 736
limit_type: min
std: [ 0.5, 0.5, 0.5 ]
mean: [ 0.5, 0.5, 0.5 ]
thresh: 0.3
box_thresh: 0.5
max_candidates: 1000
unclip_ratio: 1.6
use_dilation: true
score_mode: fast
Cls:
engine_type: "torch"
lang_type: "ch"
model_type: "mobile"
ocr_version: "PP-OCRv4"
task_type: "cls"
model_path: null
model_dir: null
cls_image_shape: [3, 48, 192]
cls_batch_num: 6
cls_thresh: 0.9
label_list: ["0", "180"]
Rec:
engine_type: "torch"
lang_type: "ch"
model_type: "mobile"
ocr_version: "PP-OCRv4"
task_type: "rec"
model_path: null
model_dir: null
rec_keys_path: null
rec_img_shape: [3, 48, 320]
rec_batch_num: 6

View File

@ -14,4 +14,5 @@
法轮大法好
法轮功大法好
法轮
李洪志
李洪志
习近平

View File

@ -1,7 +1,7 @@
import os
import cv2
import logging
from rapidocr import RapidOCR
from logger_config import logger
class OCRViolationDetector:
@ -9,47 +9,110 @@ class OCRViolationDetector:
封装RapidOCR引擎用于检测图像帧中的违禁词。
"""
def __init__(self, forbidden_words_path: str, ocr_confidence_threshold: float = 0.5): # 降低阈值提高检出率
def __init__(self, forbidden_words_path: str, ocr_confidence_threshold: float = 0.5,
log_level: int = logging.INFO, log_file: str = None):
"""
初始化OCR引擎违禁词列表。
初始化OCR引擎违禁词列表和日志配置
Args:
forbidden_words_path (str): 违禁词列表 .txt 文件的路径。
ocr_confidence_threshold (float): OCR识别结果的置信度阈值。
log_level (int): 日志级别默认为logging.INFO
log_file (str, optional): 日志文件路径,如不提供则只输出到控制台
"""
# 初始化日志
self.logger = self._setup_logger(log_level, log_file)
# 加载违禁词
self.forbidden_words = self._load_forbidden_words(forbidden_words_path)
# 初始化OCR引擎
self.ocr_engine = self._initialize_ocr()
# 设置置信度阈值
self.OCR_CONFIDENCE_THRESHOLD = ocr_confidence_threshold
self.logger.info(f"OCR置信度阈值设置为: {ocr_confidence_threshold}")
def _setup_logger(self, log_level: int, log_file: str = None) -> logging.Logger:
"""
配置日志系统
Args:
log_level: 日志级别
log_file: 日志文件路径如为None则只输出到控制台
Returns:
配置好的logger实例
"""
# 创建logger
logger = logging.getLogger('OCRViolationDetector')
logger.setLevel(log_level)
# 避免重复添加处理器
if logger.handlers:
return logger
# 定义日志格式
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
# 添加控制台处理器
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
# 如果提供了日志文件路径,则添加文件处理器
if log_file:
try:
# 确保日志目录存在
log_dir = os.path.dirname(log_file)
if log_dir and not os.path.exists(log_dir):
os.makedirs(log_dir)
file_handler = logging.FileHandler(log_file, encoding='utf-8')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.info(f"日志文件将保存至: {log_file}")
except Exception as e:
logger.warning(f"无法创建日志文件处理器: {str(e)},仅输出至控制台")
return logger
def _load_forbidden_words(self, path):
"""从txt文件加载违禁词列表与rapidocr_test.py保持一致"""
"""从txt文件加载违禁词列表"""
words = set()
if not os.path.exists(path):
logger.warning(f"警告:未找到违禁词文件 {path},将跳过违禁词检测")
self.logger.warning(f"警告:未找到违禁词文件 {path},将跳过违禁词检测")
return words
try:
with open(path, 'r', encoding='utf-8') as f:
# 去除每行首尾空格和换行符,过滤空行(不排除注释行,与测试代码统一)
# 去除每行首尾空格和换行符,过滤空行
words = {line.strip() for line in f if line.strip()}
logger.info(f"成功加载 {len(words)} 个违禁词。")
self.logger.info(f"成功加载 {len(words)} 个违禁词。")
except Exception as e:
logger.error(f"加载违禁词文件失败:{str(e)},将跳过违禁词检测")
self.logger.error(f"加载违禁词文件失败:{str(e)},将跳过违禁词检测")
return words
def _initialize_ocr(self):
"""初始化RapidOCR引擎"""
logger.info("正在初始化RapidOCR引擎...")
self.logger.info("正在初始化RapidOCR引擎...")
config_path = r".\config\1.yaml"
config_path = r"../ocr/config/1.yaml"
try:
# 检查配置文件是否存在
if not os.path.exists(config_path):
self.logger.error(f"RapidOCR配置文件不存在: {config_path}")
return None
engine = RapidOCR(
config_path=config_path
)
logger.info("RapidOCR引擎初始化成功。")
self.logger.info("RapidOCR引擎初始化成功。")
return engine
except Exception as e:
logger.error(f"RapidOCR引擎初始化失败: {e}")
self.logger.error(f"RapidOCR引擎初始化失败: {e}")
return None
def detect(self, frame):
@ -57,6 +120,7 @@ class OCRViolationDetector:
对单帧图像进行OCR检测所有出现的违禁词并返回列表
返回格式:(是否有违禁词, 违禁词列表, 对应的置信度列表)
"""
print("收到帧")
if not self.ocr_engine or not self.forbidden_words:
return False, [], []
@ -64,9 +128,9 @@ class OCRViolationDetector:
all_confidences = [] # 存储对应违禁词的置信度
try:
# 执行OCR识别(修正调用方式,与测试代码一致)
# 执行OCR识别
result = self.ocr_engine(frame)
logger.debug(f"RapidOCR 原始返回结果: {result}")
self.logger.debug(f"RapidOCR 原始返回结果: {result}")
if result is None:
return False, [], []
@ -78,59 +142,19 @@ class OCRViolationDetector:
# 遍历所有识别结果,收集所有违禁词
for text, conf in zip(texts, confidences):
if conf < self.OCR_CONFIDENCE_THRESHOLD:
logger.debug(f"文本 '{text}' 置信度 {conf:.4f} 低于阈值,跳过")
self.logger.debug(f"文本 '{text}' 置信度 {conf:.4f} 低于阈值,跳过")
continue
# 检查当前文本中是否包含多个违禁词
for word in self.forbidden_words:
if word in text:
logger.warning(f"OCR检测到违禁词: '{word}' (来自文本: '{text}') 置信度: {conf:.4f}")
self.logger.warning(f"OCR检测到违禁词: '{word}' (来自文本: '{text}') 置信度: {conf:.4f}")
all_prohibited.append(word)
all_confidences.append(conf)
except Exception as e:
logger.error(f"OCR检测过程中发生错误: {e}", exc_info=True)
self.logger.error(f"OCR检测过程中发生错误: {e}", exc_info=True)
# 返回检测结果(是否有违禁词、所有违禁词列表、对应置信度列表)
return len(all_prohibited) > 0, all_prohibited, all_confidences
# def test_single_image():
# """测试单张图片的OCR违规检测显示所有违禁词"""
# TEST_IMAGE_PATH = r"ocr/images/img_7.png" # 修正路径格式
# FORBIDDEN_WORDS_PATH = r"ocr/forbidden_words.txt"
# CONFIDENCE_THRESHOLD = 0.5
#
# detector = OCRViolationDetector(
# forbidden_words_path=FORBIDDEN_WORDS_PATH,
# ocr_confidence_threshold=CONFIDENCE_THRESHOLD
# )
#
# if not os.path.exists(TEST_IMAGE_PATH):
# print(f"错误:图片文件不存在 - {TEST_IMAGE_PATH}")
# return
#
# frame = cv2.imread(TEST_IMAGE_PATH)
# if frame is None:
# print(f"错误:无法读取图片 - {TEST_IMAGE_PATH}")
# return
#
# # 执行检测
# has_violation, words, confidences = detector.detect(frame)
#
# # 输出所有检测到的违禁词
# if has_violation:
# print(f"测试结果:图片中共检测到 {len(words)} 个违禁词:")
# for word, conf in zip(words, confidences):
# print(f"- {word}(置信度:{conf:.4f}")
# else:
# print("测试结果:图片中未检测到违禁词")
#
#
# if __name__ == "__main__":
# print("开始单张图片OCR违规检测测试...")
# test_single_image()
# print("测试完成")