优化
This commit is contained in:
		
							
								
								
									
										403
									
								
								ws/ws.py
									
									
									
									
									
								
							
							
						
						
									
										403
									
								
								ws/ws.py
									
									
									
									
									
								
							| @ -4,6 +4,8 @@ import json | ||||
| import os | ||||
| from contextlib import asynccontextmanager | ||||
| from typing import Dict, Optional, AsyncGenerator | ||||
| from concurrent.futures import ThreadPoolExecutor  # 新增:显式线程池 | ||||
|  | ||||
| from service.device_service import update_online_status_by_ip, increment_alarm_count_by_ip | ||||
| from service.device_action_service import add_device_action | ||||
| from schema.device_action_schema import DeviceActionCreate | ||||
| @ -11,372 +13,305 @@ from schema.device_action_schema import DeviceActionCreate | ||||
| import cv2 | ||||
| import numpy as np | ||||
| from fastapi import WebSocket, APIRouter, WebSocketDisconnect, FastAPI | ||||
| from queue import Queue | ||||
| from threading import Lock | ||||
| from queue import Queue  # 线程安全队列,无需额外Lock | ||||
|  | ||||
| from ocr.model_violation_detector import MultiModelViolationDetector | ||||
|  | ||||
| # 配置文件路径(建议实际部署时改为相对路径或环境变量) | ||||
| # -------------------------- 配置调整 -------------------------- | ||||
| # 模型路径(建议改为环境变量) | ||||
| YOLO_MODEL_PATH = r"D:\Git\bin\video\ocr\models\best.pt" | ||||
| OCR_CONFIG_PATH = r"D:\Git\bin\video\ocr\config\1.yaml" | ||||
|  | ||||
| # 模型池配置(根据GPU显存调整,每个模型约占1G显存) | ||||
| MODEL_POOL_SIZE = 3  # 最大并发客户端数 | ||||
| # 核心优化:模型池大小(决定最大并发任务数,显存占用=大小×单模型显存) | ||||
| MODEL_POOL_SIZE = 5  # 示例:设为5,支持5个任务并行,显存会明显上升 | ||||
| THREAD_POOL_SIZE = MODEL_POOL_SIZE * 2  # 线程池大小≥模型池,避免线程瓶颈 | ||||
|  | ||||
| # 配置常量 | ||||
| HEARTBEAT_INTERVAL = 30  # 心跳检查间隔(秒) | ||||
| # 其他配置 | ||||
| HEARTBEAT_INTERVAL = 30  # 心跳间隔(秒) | ||||
| HEARTBEAT_TIMEOUT = 600  # 客户端超时阈值(秒) | ||||
| WS_ENDPOINT = "/ws"  # WebSocket端点路径 | ||||
| FRAME_QUEUE_SIZE = 1  # 帧队列大小限制 | ||||
| WS_ENDPOINT = "/ws"  # WebSocket端点 | ||||
| FRAME_QUEUE_SIZE = 5  # 增大帧队列,允许缓存更多帧(避免丢帧) | ||||
|  | ||||
|  | ||||
| # 工具函数:获取格式化时间字符串 | ||||
| # -------------------------- 工具函数 -------------------------- | ||||
| def get_current_time_str() -> str: | ||||
|     return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") | ||||
|  | ||||
|  | ||||
| def get_current_time_file_str() -> str: | ||||
|     return datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f") | ||||
|  | ||||
|  | ||||
| # 模型池实现 - 提前初始化固定数量的模型实例 | ||||
| # -------------------------- 模型池重构(核心修改1) -------------------------- | ||||
| class ModelPool: | ||||
|     def __init__(self, pool_size: int = MODEL_POOL_SIZE): | ||||
|         self.pool = Queue(maxsize=pool_size) | ||||
|         self.lock = Lock() | ||||
|         # 提前初始化模型实例(显存会在此阶段预分配) | ||||
|         # 移除冗余Lock:Queue.get()/put()本身线程安全 | ||||
|         self._init_models(pool_size) | ||||
|         print(f"[{get_current_time_str()}] 模型池初始化完成(共{pool_size}个实例,显存已预分配)") | ||||
|  | ||||
|     def _init_models(self, pool_size: int): | ||||
|         """预加载所有模型实例(初始化时显存会一次性上升)""" | ||||
|         for i in range(pool_size): | ||||
|             detector = MultiModelViolationDetector( | ||||
|                 ocr_config_path=OCR_CONFIG_PATH, | ||||
|                 yolo_model_path=YOLO_MODEL_PATH, | ||||
|                 ocr_confidence_threshold=0.5 | ||||
|             ) | ||||
|             self.pool.put(detector) | ||||
|             print(f"[{get_current_time_str()}] 模型池初始化:第{i + 1}/{pool_size}个模型加载完成") | ||||
|             try: | ||||
|                 detector = MultiModelViolationDetector( | ||||
|                     ocr_config_path=OCR_CONFIG_PATH, | ||||
|                     yolo_model_path=YOLO_MODEL_PATH, | ||||
|                     ocr_confidence_threshold=0.5 | ||||
|                 ) | ||||
|                 self.pool.put(detector) | ||||
|                 print(f"[{get_current_time_str()}] 模型实例{i+1}/{pool_size}加载完成") | ||||
|             except Exception as e: | ||||
|                 raise RuntimeError(f"模型实例{i+1}加载失败:{str(e)}") | ||||
|  | ||||
|     def get_model(self) -> MultiModelViolationDetector: | ||||
|         """从池子里获取模型(阻塞直到有可用实例)""" | ||||
|         with self.lock: | ||||
|             return self.pool.get() | ||||
|         """获取模型(阻塞直到有空闲实例,确保并发安全)""" | ||||
|         return self.pool.get() | ||||
|  | ||||
|     def return_model(self, detector: MultiModelViolationDetector): | ||||
|         """将模型归还给池子""" | ||||
|         with self.lock: | ||||
|             self.pool.put(detector) | ||||
|         """归还模型(立即释放资源供其他任务使用)""" | ||||
|         self.pool.put(detector) | ||||
|  | ||||
| # -------------------------- 全局资源初始化 -------------------------- | ||||
| model_pool = ModelPool(pool_size=MODEL_POOL_SIZE)  # 初始化模型池(预占显存) | ||||
| thread_pool = ThreadPoolExecutor(  # 显式创建线程池(核心修改2) | ||||
|     max_workers=THREAD_POOL_SIZE, | ||||
|     thread_name_prefix="ModelWorker-"  # 线程命名,便于调试 | ||||
| ) | ||||
|  | ||||
| # 初始化模型池(程序启动时加载所有模型,显存会一次性占用 MODEL_POOL_SIZE * 单模型显存) | ||||
| model_pool = ModelPool(pool_size=MODEL_POOL_SIZE) | ||||
|  | ||||
|  | ||||
| # 客户端连接封装 | ||||
| # -------------------------- 客户端连接封装(核心修改3) -------------------------- | ||||
| class ClientConnection: | ||||
|     def __init__(self, websocket: WebSocket, client_ip: str): | ||||
|         self.websocket = websocket | ||||
|         self.client_ip = client_ip | ||||
|         self.last_heartbeat = datetime.datetime.now() | ||||
|         self.frame_queue = asyncio.Queue(maxsize=FRAME_QUEUE_SIZE) | ||||
|         self.frame_queue = asyncio.Queue(maxsize=FRAME_QUEUE_SIZE)  # 增大队列 | ||||
|         self.consumer_task: Optional[asyncio.Task] = None | ||||
|  | ||||
|         # 从模型池获取专属模型(每个客户端独立占用一个模型实例) | ||||
|         self.detector = model_pool.get_model() | ||||
|         print(f"[{get_current_time_str()}] 客户端{self.client_ip}:已获取模型池中的模型实例(显存独立)") | ||||
|         # 移除“客户端独占模型”:不再持有detector属性 | ||||
|  | ||||
|     def update_heartbeat(self): | ||||
|         """更新心跳时间""" | ||||
|         self.last_heartbeat = datetime.datetime.now() | ||||
|  | ||||
|     def is_alive(self) -> bool: | ||||
|         """判断客户端是否存活""" | ||||
|         timeout = (datetime.datetime.now() - self.last_heartbeat).total_seconds() | ||||
|         return timeout < HEARTBEAT_TIMEOUT | ||||
|  | ||||
|     def start_consumer(self): | ||||
|         """启动帧消费任务""" | ||||
|         """启动帧消费任务(每个客户端一个独立任务)""" | ||||
|         self.consumer_task = asyncio.create_task(self.consume_frames()) | ||||
|         return self.consumer_task | ||||
|  | ||||
|     def release_model(self): | ||||
|         """客户端断开时归还模型到池""" | ||||
|         model_pool.return_model(self.detector) | ||||
|         print(f"[{get_current_time_str()}] 客户端{self.client_ip}:模型已归还至模型池(显存可复用)") | ||||
|  | ||||
|     async def send_frame_permit(self): | ||||
|         """发送帧发送许可信号""" | ||||
|         """发送帧许可信号(允许客户端继续发帧)""" | ||||
|         try: | ||||
|             frame_permit_msg = { | ||||
|             await self.websocket.send_json({ | ||||
|                 "type": "frame", | ||||
|                 "timestamp": get_current_time_str(), | ||||
|                 "client_ip": self.client_ip | ||||
|             } | ||||
|             await self.websocket.send_json(frame_permit_msg) | ||||
|             print(f"[{get_current_time_str()}] 客户端{self.client_ip}:已发送帧发送许可信号") | ||||
|             }) | ||||
|         except Exception as e: | ||||
|             print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧许可信号发送失败 - {str(e)}") | ||||
|             print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧许可发送失败 - {str(e)}") | ||||
|  | ||||
|     async def consume_frames(self) -> None: | ||||
|         """消费队列中的帧并处理(并行执行核心)""" | ||||
|         """消费帧队列(并发核心:每帧临时借模型处理)""" | ||||
|         try: | ||||
|             while True: | ||||
|                 # 1. 从队列取出帧 | ||||
|                 # 1. 从队列取帧(无帧时阻塞) | ||||
|                 frame_data = await self.frame_queue.get() | ||||
|  | ||||
|                 # 2. 立即发送下一帧许可 | ||||
|                 # 2. 立即发送下一帧许可(让客户端持续发帧,积累并发任务) | ||||
|                 await self.send_frame_permit() | ||||
|  | ||||
|                 try: | ||||
|                     # 3. 并行处理帧:用线程池执行AI检测(真正并发) | ||||
|                     # 3. 并行处理帧(核心:任务级借模型) | ||||
|                     await self.process_frame(frame_data) | ||||
|                 finally: | ||||
|                     self.frame_queue.task_done() | ||||
|  | ||||
|                     self.frame_queue.task_done()  # 标记帧处理完成 | ||||
|         except asyncio.CancelledError: | ||||
|             print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧消费任务已取消") | ||||
|         except Exception as e: | ||||
|             print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧消费逻辑错误 - {str(e)}") | ||||
|             print(f"[{get_current_time_str()}] 客户端{self.client_ip}:消费逻辑错误 - {str(e)}") | ||||
|  | ||||
|     async def process_frame(self, frame_data: bytes) -> None: | ||||
|         """处理单帧图像数据(使用客户端专属模型)""" | ||||
|         # 二进制数据转OpenCV图像 | ||||
|         nparr = np.frombuffer(frame_data, np.uint8) | ||||
|         img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) | ||||
|         if img is None: | ||||
|             print(f"[{get_current_time_str()}] 客户端{self.client_ip}:无法解析图像数据") | ||||
|             return | ||||
|  | ||||
|         # 确保图像保存目录存在 | ||||
|         os.makedirs('images', exist_ok=True) | ||||
|  | ||||
|         # 保存图像 | ||||
|         filename = f"images/{self.client_ip.replace('.', '_')}_{get_current_time_file_str()}.jpg" | ||||
|         """处理单帧(核心修改4:任务级借还模型)""" | ||||
|         # 1. 临时借用模型(阻塞直到有空闲实例,显存随借用数上升) | ||||
|         detector = model_pool.get_model() | ||||
|         try: | ||||
|             cv2.imwrite(filename, img) | ||||
|             print(f"[{get_current_time_str()}] 图像已保存至:{filename}") | ||||
|             # 2. 二进制转OpenCV图像 | ||||
|             nparr = np.frombuffer(frame_data, np.uint8) | ||||
|             img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) | ||||
|             if img is None: | ||||
|                 print(f"[{get_current_time_str()}] 客户端{self.client_ip}:图像解析失败") | ||||
|                 return | ||||
|  | ||||
|             # 关键修改:使用客户端专属模型 + 线程池并行执行AI检测 | ||||
|             has_violation, violation_type, details = await asyncio.to_thread( | ||||
|                 self.detector.detect_violations,  # 客户端独立模型 | ||||
|             # 3. 保存图像(可选) | ||||
|             os.makedirs('images', exist_ok=True) | ||||
|             filename = f"images/{self.client_ip.replace('.', '_')}_{get_current_time_file_str()}.jpg" | ||||
|             cv2.imwrite(filename, img) | ||||
|  | ||||
|             # 4. 显式线程池执行AI检测(真正并发,无线程瓶颈) | ||||
|             loop = asyncio.get_running_loop() | ||||
|             has_violation, violation_type, details = await loop.run_in_executor( | ||||
|                 thread_pool,  # 用自定义线程池,避免默认线程不足 | ||||
|                 detector.detect_violations,  # 临时借用的模型 | ||||
|                 img  # 输入图像 | ||||
|             ) | ||||
|  | ||||
|             # 5. 违规处理(与原逻辑一致) | ||||
|             if has_violation: | ||||
|                 print( | ||||
|                     f"[{get_current_time_str()}] 客户端{self.client_ip}:检测到违规 - 类型: {violation_type}, 详情: {details}") | ||||
|  | ||||
|                 # 调用违规次数加一方法 | ||||
|                 try: | ||||
|                     await asyncio.to_thread(increment_alarm_count_by_ip, self.client_ip) | ||||
|                     print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规次数已+1") | ||||
|                 except Exception as e: | ||||
|                     print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规次数更新失败 - {str(e)}") | ||||
|  | ||||
|                 print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规 - {violation_type}") | ||||
|                 # 违规次数更新(用线程池避免阻塞事件循环) | ||||
|                 await loop.run_in_executor(thread_pool, increment_alarm_count_by_ip, self.client_ip) | ||||
|                 # 发送危险通知 | ||||
|                 danger_msg = { | ||||
|                 await self.websocket.send_json({ | ||||
|                     "type": "danger", | ||||
|                     "timestamp": get_current_time_str(), | ||||
|                     "client_ip": self.client_ip | ||||
|                 } | ||||
|                 await self.websocket.send_json(danger_msg) | ||||
|                     "client_ip": self.client_ip, | ||||
|                     "violation_type": violation_type, | ||||
|                     "details": details | ||||
|                 }) | ||||
|             else: | ||||
|                 print(f"[{get_current_time_str()}] 客户端{self.client_ip}:未检测到违规") | ||||
|                 print(f"[{get_current_time_str()}] 客户端{self.client_ip}:无违规") | ||||
|         except Exception as e: | ||||
|             print(f"[{get_current_time_str()}] 客户端{self.client_ip}:图像处理错误 - {str(e)}") | ||||
|             print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧处理错误 - {str(e)}") | ||||
|         finally: | ||||
|             # 6. 无论成功/失败,强制归还模型(核心:释放资源供其他任务使用) | ||||
|             model_pool.return_model(detector) | ||||
|             print(f"[{get_current_time_str()}] 客户端{self.client_ip}:模型已归还(可复用)") | ||||
|  | ||||
|  | ||||
| # 全局状态管理 | ||||
| # -------------------------- 全局状态与心跳 -------------------------- | ||||
| connected_clients: Dict[str, ClientConnection] = {} | ||||
| client_lock = asyncio.Lock()  # 保护connected_clients的锁 | ||||
| client_lock = asyncio.Lock()  # 保护客户端字典的异步锁 | ||||
| heartbeat_task: Optional[asyncio.Task] = None | ||||
|  | ||||
|  | ||||
| # 心跳检查 | ||||
| async def heartbeat_checker(): | ||||
|     """心跳检查(移除模型归还逻辑,因模型已任务级归还)""" | ||||
|     while True: | ||||
|         current_time = get_current_time_str() | ||||
|         # 加锁保护字典遍历 | ||||
|         async with client_lock: | ||||
|             # 筛选超时客户端 | ||||
|             timeout_ips = [ip for ip, conn in connected_clients.items() if not conn.is_alive()] | ||||
|  | ||||
|         if timeout_ips: | ||||
|             print(f"[{current_time}] 心跳检查:{len(timeout_ips)}个客户端超时(IP:{timeout_ips})") | ||||
|             for ip in timeout_ips: | ||||
|                 try: | ||||
|                     async with client_lock: | ||||
|                         conn = connected_clients.get(ip) | ||||
|                         if not conn: | ||||
|                             continue | ||||
|  | ||||
|                         if conn.consumer_task and not conn.consumer_task.done(): | ||||
|                             conn.consumer_task.cancel() | ||||
|                         await conn.websocket.close(code=1008, reason="心跳超时") | ||||
|  | ||||
|                         # 归还模型 | ||||
|                         conn.release_model() | ||||
|  | ||||
|                         # 超时设为离线并记录 | ||||
|                         try: | ||||
|                             await asyncio.to_thread(update_online_status_by_ip, ip, 0) | ||||
|                             action_data = DeviceActionCreate(client_ip=ip, action=0) | ||||
|                             await asyncio.to_thread(add_device_action, action_data) | ||||
|                             print(f"[{current_time}] 客户端{ip}:已标记为离线并记录操作") | ||||
|                         except Exception as e: | ||||
|                             print(f"[{current_time}] 客户端{ip}:离线状态更新失败 - {str(e)}") | ||||
|                 finally: | ||||
|                     async with client_lock: | ||||
|                         connected_clients.pop(ip, None) | ||||
|         else: | ||||
|         for ip in timeout_ips: | ||||
|             async with client_lock: | ||||
|                 print(f"[{current_time}] 心跳检查:{len(connected_clients)}个客户端在线") | ||||
|                 conn = connected_clients.get(ip) | ||||
|                 if not conn: | ||||
|                     continue | ||||
|                 # 取消消费任务+关闭连接 | ||||
|                 if conn.consumer_task and not conn.consumer_task.done(): | ||||
|                     conn.consumer_task.cancel() | ||||
|                 await conn.websocket.close(code=1008, reason="心跳超时") | ||||
|                 # 标记离线(用线程池) | ||||
|                 loop = asyncio.get_running_loop() | ||||
|                 await loop.run_in_executor(thread_pool, update_online_status_by_ip, ip, 0) | ||||
|                 await loop.run_in_executor( | ||||
|                     thread_pool, add_device_action, DeviceActionCreate(client_ip=ip, action=0) | ||||
|                 ) | ||||
|                 connected_clients.pop(ip) | ||||
|                 print(f"[{current_time}] 客户端{ip}:超时离线(资源已清理)") | ||||
|  | ||||
|         # 打印在线状态 | ||||
|         async with client_lock: | ||||
|             print(f"[{current_time}] 心跳检查:{len(connected_clients)}个客户端在线") | ||||
|         await asyncio.sleep(HEARTBEAT_INTERVAL) | ||||
|  | ||||
|  | ||||
| # 应用生命周期管理 | ||||
| # -------------------------- 应用生命周期(核心修改5:管理线程池) -------------------------- | ||||
| @asynccontextmanager | ||||
| async def lifespan(app: FastAPI): | ||||
|     global heartbeat_task | ||||
|     # 启动心跳任务 | ||||
|     heartbeat_task = asyncio.create_task(heartbeat_checker()) | ||||
|     print(f"[{get_current_time_str()}] 全局心跳检查任务启动(任务ID:{id(heartbeat_task)})") | ||||
|     yield | ||||
|     print(f"[{get_current_time_str()}] 心跳任务启动(ID:{id(heartbeat_task)})") | ||||
|     print(f"[{get_current_time_str()}] 线程池启动(最大线程数:{THREAD_POOL_SIZE})") | ||||
|     yield  # 应用运行期间 | ||||
|     # 清理资源 | ||||
|     if heartbeat_task and not heartbeat_task.done(): | ||||
|         heartbeat_task.cancel() | ||||
|         try: | ||||
|             await heartbeat_task | ||||
|             print(f"[{get_current_time_str()}] 全局心跳检查任务已取消") | ||||
|         except asyncio.CancelledError: | ||||
|             pass | ||||
|         await heartbeat_task | ||||
|         print(f"[{get_current_time_str()}] 心跳任务已关闭") | ||||
|     # 关闭线程池(等待所有任务完成) | ||||
|     thread_pool.shutdown(wait=True) | ||||
|     print(f"[{get_current_time_str()}] 线程池已关闭") | ||||
|  | ||||
|  | ||||
| # 消息处理工具函数 | ||||
| async def send_heartbeat_ack(conn: ClientConnection): | ||||
|     try: | ||||
|         heartbeat_ack_msg = { | ||||
|             "type": "heart", | ||||
|             "timestamp": get_current_time_str(), | ||||
|             "client_ip": conn.client_ip | ||||
|         } | ||||
|         await conn.websocket.send_json(heartbeat_ack_msg) | ||||
|         print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:已发送心跳确认") | ||||
|         return True | ||||
|     except Exception as e: | ||||
|         async with client_lock: | ||||
|             connected_clients.pop(conn.client_ip, None) | ||||
|         print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:心跳确认发送失败 - {str(e)}") | ||||
|         return False | ||||
|  | ||||
|  | ||||
| async def handle_text_msg(conn: ClientConnection, text: str): | ||||
|     try: | ||||
|         msg = json.loads(text) | ||||
|         if msg.get("type") == "heart": | ||||
|             conn.update_heartbeat() | ||||
|             await send_heartbeat_ack(conn) | ||||
|         else: | ||||
|             print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:未知文本消息类型({msg.get('type')})") | ||||
|     except json.JSONDecodeError: | ||||
|         print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:无效JSON文本消息") | ||||
|  | ||||
|  | ||||
| async def handle_binary_msg(conn: ClientConnection, data: bytes): | ||||
|     try: | ||||
|         conn.frame_queue.put_nowait(data) | ||||
|         print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:图像数据({len(data)}字节)已加入队列") | ||||
|     except asyncio.QueueFull: | ||||
|         print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:帧队列已满,丢弃当前图像数据") | ||||
|  | ||||
|  | ||||
| # WebSocket路由配置 | ||||
| # -------------------------- WebSocket路由 -------------------------- | ||||
| ws_router = APIRouter() | ||||
|  | ||||
|  | ||||
| @ws_router.websocket(WS_ENDPOINT) | ||||
| async def websocket_endpoint(websocket: WebSocket): | ||||
|     await websocket.accept() | ||||
|     client_ip = websocket.client.host if websocket.client else "unknown_ip" | ||||
|     current_time = get_current_time_str() | ||||
|     print(f"[{current_time}] 客户端{client_ip}:WebSocket连接已建立") | ||||
|     print(f"[{current_time}] 客户端{client_ip}:连接建立") | ||||
|  | ||||
|     is_online_updated = False | ||||
|     new_conn = None | ||||
|  | ||||
|     is_online_updated = False | ||||
|     try: | ||||
|         # 处理重复连接 | ||||
|         # 处理重复连接(关闭旧连接) | ||||
|         async with client_lock: | ||||
|             if client_ip in connected_clients: | ||||
|                 old_conn = connected_clients[client_ip] | ||||
|                 if old_conn.consumer_task and not old_conn.consumer_task.done(): | ||||
|                     old_conn.consumer_task.cancel() | ||||
|                 await old_conn.websocket.close(code=1008, reason="同一IP新连接建立") | ||||
|                 old_conn.release_model()  # 归还旧连接的模型 | ||||
|                 await old_conn.websocket.close(code=1008, reason="新连接抢占") | ||||
|                 connected_clients.pop(client_ip) | ||||
|                 print(f"[{current_time}] 客户端{client_ip}:已关闭旧连接并回收模型") | ||||
|                 print(f"[{current_time}] 客户端{client_ip}:旧连接已关闭") | ||||
|  | ||||
|         # 注册新连接 | ||||
|         # 创建新连接+启动消费任务 | ||||
|         new_conn = ClientConnection(websocket, client_ip) | ||||
|         async with client_lock: | ||||
|             connected_clients[client_ip] = new_conn | ||||
|         new_conn.start_consumer() | ||||
|         # 初始许可:连接建立后立即发一次 | ||||
|         # 初始发送帧许可(让客户端立即发帧) | ||||
|         await new_conn.send_frame_permit() | ||||
|  | ||||
|         # 标记上线并记录 | ||||
|         try: | ||||
|             await asyncio.to_thread(update_online_status_by_ip, client_ip, 1) | ||||
|             action_data = DeviceActionCreate(client_ip=client_ip, action=1) | ||||
|             await asyncio.to_thread(add_device_action, action_data) | ||||
|             print(f"[{current_time}] 客户端{client_ip}:已标记为在线并记录操作") | ||||
|             is_online_updated = True | ||||
|         except Exception as e: | ||||
|             print(f"[{current_time}] 客户端{client_ip}:上线状态更新失败 - {str(e)}") | ||||
|  | ||||
|         # 标记客户端在线 | ||||
|         loop = asyncio.get_running_loop() | ||||
|         await loop.run_in_executor(thread_pool, update_online_status_by_ip, client_ip, 1) | ||||
|         await loop.run_in_executor( | ||||
|             thread_pool, add_device_action, DeviceActionCreate(client_ip=client_ip, action=1) | ||||
|         ) | ||||
|         is_online_updated = True | ||||
|         async with client_lock: | ||||
|             print(f"[{current_time}] 客户端{client_ip}:新连接注册成功,在线数:{len(connected_clients)}") | ||||
|             connected_clients[client_ip] = new_conn | ||||
|         print(f"[{current_time}] 客户端{client_ip}:注册成功(在线数:{len(connected_clients)})") | ||||
|  | ||||
|         # 消息循环 | ||||
|         # 消息循环(接收文本/二进制帧) | ||||
|         while True: | ||||
|             data = await websocket.receive() | ||||
|             if "text" in data: | ||||
|                 await handle_text_msg(new_conn, data["text"]) | ||||
|                 # 处理文本消息(如心跳) | ||||
|                 try: | ||||
|                     msg = json.loads(data["text"]) | ||||
|                     if msg.get("type") == "heart": | ||||
|                         new_conn.update_heartbeat() | ||||
|                         # 回复心跳确认 | ||||
|                         await websocket.send_json({ | ||||
|                             "type": "heart", | ||||
|                             "timestamp": get_current_time_str(), | ||||
|                             "client_ip": client_ip | ||||
|                         }) | ||||
|                 except json.JSONDecodeError: | ||||
|                     print(f"[{get_current_time_str()}] 客户端{client_ip}:无效JSON") | ||||
|             elif "bytes" in data: | ||||
|                 await handle_binary_msg(new_conn, data["bytes"]) | ||||
|                 # 处理二进制帧(图像) | ||||
|                 try: | ||||
|                     await new_conn.frame_queue.put(data["bytes"]) | ||||
|                     print(f"[{get_current_time_str()}] 客户端{client_ip}:帧已入队(队列大小:{new_conn.frame_queue.qsize()})") | ||||
|                 except asyncio.QueueFull: | ||||
|                     print(f"[{get_current_time_str()}] 客户端{client_ip}:帧队列满(丢弃当前帧)") | ||||
|  | ||||
|     except WebSocketDisconnect as e: | ||||
|         print(f"[{get_current_time_str()}] 客户端{client_ip}:主动断开连接(代码:{e.code})") | ||||
|         print(f"[{get_current_time_str()}] 客户端{client_ip}:主动断开(代码:{e.code})") | ||||
|     except Exception as e: | ||||
|         print(f"[{get_current_time_str()}] 客户端{client_ip}:连接异常 - {str(e)[:50]}") | ||||
|     finally: | ||||
|         # 清理资源并标记离线 | ||||
|         # 清理资源(无需归还模型,已在process_frame中归还) | ||||
|         if new_conn and client_ip in connected_clients: | ||||
|             async with client_lock: | ||||
|                 conn = connected_clients.get(client_ip) | ||||
|                 if conn: | ||||
|                     if conn.consumer_task and not conn.consumer_task.done(): | ||||
|                         conn.consumer_task.cancel() | ||||
|  | ||||
|                     # 归还模型到模型池 | ||||
|                     conn.release_model() | ||||
|  | ||||
|                     # 主动/异常断开时标记离线 | ||||
|                     # 标记离线(仅当在线状态已更新时) | ||||
|                     if is_online_updated: | ||||
|                         try: | ||||
|                             await asyncio.to_thread(update_online_status_by_ip, client_ip, 0) | ||||
|                             action_data = DeviceActionCreate(client_ip=client_ip, action=0) | ||||
|                             await asyncio.to_thread(add_device_action, action_data) | ||||
|                             print(f"[{get_current_time_str()}] 客户端{client_ip}:断开后已标记为离线") | ||||
|                         except Exception as e: | ||||
|                             print(f"[{get_current_time_str()}] 客户端{client_ip}:断开后离线更新失败 - {str(e)}") | ||||
|  | ||||
|                     connected_clients.pop(client_ip, None) | ||||
|  | ||||
|                         loop = asyncio.get_running_loop() | ||||
|                         await loop.run_in_executor(thread_pool, update_online_status_by_ip, client_ip, 0) | ||||
|                         await loop.run_in_executor( | ||||
|                             thread_pool, add_device_action, DeviceActionCreate(client_ip=client_ip, action=0) | ||||
|                         ) | ||||
|                     connected_clients.pop(client_ip) | ||||
|         async with client_lock: | ||||
|             print(f"[{get_current_time_str()}] 客户端{client_ip}:资源已清理,在线数:{len(connected_clients)}") | ||||
|  | ||||
|  | ||||
| # 创建FastAPI应用 | ||||
| app = FastAPI(lifespan=lifespan) | ||||
| app.include_router(ws_router) | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     import uvicorn | ||||
|  | ||||
|     uvicorn.run(app, host="0.0.0.0", port=8000) | ||||
|             print(f"[{get_current_time_str()}] 客户端{client_ip}:资源清理完成(在线数:{len(connected_clients)})") | ||||
|  | ||||
		Reference in New Issue
	
	Block a user
	 ZZX9599
					ZZX9599