This commit is contained in:
ZZX9599
2025-09-04 17:33:20 +08:00
parent 3ed73bd9eb
commit ec6dbfde90

403
ws/ws.py
View File

@ -4,6 +4,8 @@ import json
import os
from contextlib import asynccontextmanager
from typing import Dict, Optional, AsyncGenerator
from concurrent.futures import ThreadPoolExecutor # 新增:显式线程池
from service.device_service import update_online_status_by_ip, increment_alarm_count_by_ip
from service.device_action_service import add_device_action
from schema.device_action_schema import DeviceActionCreate
@ -11,372 +13,305 @@ from schema.device_action_schema import DeviceActionCreate
import cv2
import numpy as np
from fastapi import WebSocket, APIRouter, WebSocketDisconnect, FastAPI
from queue import Queue
from threading import Lock
from queue import Queue # 线程安全队列无需额外Lock
from ocr.model_violation_detector import MultiModelViolationDetector
# 配置文件路径(建议实际部署时改为相对路径或环境变量)
# -------------------------- 配置调整 --------------------------
# 模型路径(建议改为环境变量)
YOLO_MODEL_PATH = r"D:\Git\bin\video\ocr\models\best.pt"
OCR_CONFIG_PATH = r"D:\Git\bin\video\ocr\config\1.yaml"
# 模型池配置根据GPU显存调整每个模型约占1G显存)
MODEL_POOL_SIZE = 3 # 最大并发客户端数
# 核心优化:模型池大小(决定最大并发任务数,显存占用=大小×单模型显存)
MODEL_POOL_SIZE = 5 # 示例设为5支持5个任务并行显存会明显上升
THREAD_POOL_SIZE = MODEL_POOL_SIZE * 2 # 线程池大小≥模型池,避免线程瓶颈
# 配置常量
HEARTBEAT_INTERVAL = 30 # 心跳检查间隔(秒)
# 其他配置
HEARTBEAT_INTERVAL = 30 # 心跳间隔(秒)
HEARTBEAT_TIMEOUT = 600 # 客户端超时阈值(秒)
WS_ENDPOINT = "/ws" # WebSocket端点路径
FRAME_QUEUE_SIZE = 1 # 帧队列大小限制
WS_ENDPOINT = "/ws" # WebSocket端点
FRAME_QUEUE_SIZE = 5 # 增大帧队列,允许缓存更多帧(避免丢帧)
# 工具函数:获取格式化时间字符串
# -------------------------- 工具函数 --------------------------
def get_current_time_str() -> str:
return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
def get_current_time_file_str() -> str:
return datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
# 模型池实现 - 提前初始化固定数量的模型实例
# -------------------------- 模型池重构核心修改1 --------------------------
class ModelPool:
def __init__(self, pool_size: int = MODEL_POOL_SIZE):
self.pool = Queue(maxsize=pool_size)
self.lock = Lock()
# 提前初始化模型实例(显存会在此阶段预分配)
# 移除冗余LockQueue.get()/put()本身线程安全
self._init_models(pool_size)
print(f"[{get_current_time_str()}] 模型池初始化完成(共{pool_size}个实例,显存已预分配)")
def _init_models(self, pool_size: int):
"""预加载所有模型实例(初始化时显存会一次性上升)"""
for i in range(pool_size):
detector = MultiModelViolationDetector(
ocr_config_path=OCR_CONFIG_PATH,
yolo_model_path=YOLO_MODEL_PATH,
ocr_confidence_threshold=0.5
)
self.pool.put(detector)
print(f"[{get_current_time_str()}] 模型池初始化:第{i + 1}/{pool_size}个模型加载完成")
try:
detector = MultiModelViolationDetector(
ocr_config_path=OCR_CONFIG_PATH,
yolo_model_path=YOLO_MODEL_PATH,
ocr_confidence_threshold=0.5
)
self.pool.put(detector)
print(f"[{get_current_time_str()}] 模型实例{i+1}/{pool_size}加载完成")
except Exception as e:
raise RuntimeError(f"模型实例{i+1}加载失败:{str(e)}")
def get_model(self) -> MultiModelViolationDetector:
"""从池子里获取模型(阻塞直到有可用实例"""
with self.lock:
return self.pool.get()
"""获取模型(阻塞直到有空闲实例,确保并发安全"""
return self.pool.get()
def return_model(self, detector: MultiModelViolationDetector):
"""将模型归还给池子"""
with self.lock:
self.pool.put(detector)
"""归还模型(立即释放资源供其他任务使用)"""
self.pool.put(detector)
# -------------------------- 全局资源初始化 --------------------------
model_pool = ModelPool(pool_size=MODEL_POOL_SIZE) # 初始化模型池(预占显存)
thread_pool = ThreadPoolExecutor( # 显式创建线程池核心修改2
max_workers=THREAD_POOL_SIZE,
thread_name_prefix="ModelWorker-" # 线程命名,便于调试
)
# 初始化模型池(程序启动时加载所有模型,显存会一次性占用 MODEL_POOL_SIZE * 单模型显存)
model_pool = ModelPool(pool_size=MODEL_POOL_SIZE)
# 客户端连接封装
# -------------------------- 客户端连接封装核心修改3 --------------------------
class ClientConnection:
def __init__(self, websocket: WebSocket, client_ip: str):
self.websocket = websocket
self.client_ip = client_ip
self.last_heartbeat = datetime.datetime.now()
self.frame_queue = asyncio.Queue(maxsize=FRAME_QUEUE_SIZE)
self.frame_queue = asyncio.Queue(maxsize=FRAME_QUEUE_SIZE) # 增大队列
self.consumer_task: Optional[asyncio.Task] = None
# 从模型池获取专属模型(每个客户端独立占用一个模型实例)
self.detector = model_pool.get_model()
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:已获取模型池中的模型实例(显存独立)")
# 移除“客户端独占模型”不再持有detector属性
def update_heartbeat(self):
"""更新心跳时间"""
self.last_heartbeat = datetime.datetime.now()
def is_alive(self) -> bool:
"""判断客户端是否存活"""
timeout = (datetime.datetime.now() - self.last_heartbeat).total_seconds()
return timeout < HEARTBEAT_TIMEOUT
def start_consumer(self):
"""启动帧消费任务"""
"""启动帧消费任务(每个客户端一个独立任务)"""
self.consumer_task = asyncio.create_task(self.consume_frames())
return self.consumer_task
def release_model(self):
"""客户端断开时归还模型到池"""
model_pool.return_model(self.detector)
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:模型已归还至模型池(显存可复用)")
async def send_frame_permit(self):
"""发送帧发送许可信号"""
"""发送帧许可信号(允许客户端继续发帧)"""
try:
frame_permit_msg = {
await self.websocket.send_json({
"type": "frame",
"timestamp": get_current_time_str(),
"client_ip": self.client_ip
}
await self.websocket.send_json(frame_permit_msg)
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:已发送帧发送许可信号")
})
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧许可信号发送失败 - {str(e)}")
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧许可发送失败 - {str(e)}")
async def consume_frames(self) -> None:
"""消费队列中的帧并处理(并行执行核心"""
"""消费队列(并发核心:每帧临时借模型处理"""
try:
while True:
# 1. 从队列取
# 1. 从队列取帧(无帧时阻塞)
frame_data = await self.frame_queue.get()
# 2. 立即发送下一帧许可
# 2. 立即发送下一帧许可(让客户端持续发帧,积累并发任务)
await self.send_frame_permit()
try:
# 3. 并行处理帧用线程池执行AI检测真正并发
# 3. 并行处理帧(核心:任务级借模型
await self.process_frame(frame_data)
finally:
self.frame_queue.task_done()
self.frame_queue.task_done() # 标记帧处理完成
except asyncio.CancelledError:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧消费任务已取消")
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}消费逻辑错误 - {str(e)}")
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:消费逻辑错误 - {str(e)}")
async def process_frame(self, frame_data: bytes) -> None:
"""处理单帧图像数据(使用客户端专属模型)"""
# 二进制数据转OpenCV图像
nparr = np.frombuffer(frame_data, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if img is None:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:无法解析图像数据")
return
# 确保图像保存目录存在
os.makedirs('images', exist_ok=True)
# 保存图像
filename = f"images/{self.client_ip.replace('.', '_')}_{get_current_time_file_str()}.jpg"
"""处理单帧核心修改4任务级借还模型)"""
# 1. 临时借用模型(阻塞直到有空闲实例,显存随借用数上升)
detector = model_pool.get_model()
try:
cv2.imwrite(filename, img)
print(f"[{get_current_time_str()}] 图像已保存至:{filename}")
# 2. 二进制转OpenCV图像
nparr = np.frombuffer(frame_data, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if img is None:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:图像解析失败")
return
# 关键修改:使用客户端专属模型 + 线程池并行执行AI检测
has_violation, violation_type, details = await asyncio.to_thread(
self.detector.detect_violations, # 客户端独立模型
# 3. 保存图像(可选)
os.makedirs('images', exist_ok=True)
filename = f"images/{self.client_ip.replace('.', '_')}_{get_current_time_file_str()}.jpg"
cv2.imwrite(filename, img)
# 4. 显式线程池执行AI检测真正并发无线程瓶颈
loop = asyncio.get_running_loop()
has_violation, violation_type, details = await loop.run_in_executor(
thread_pool, # 用自定义线程池,避免默认线程不足
detector.detect_violations, # 临时借用的模型
img # 输入图像
)
# 5. 违规处理(与原逻辑一致)
if has_violation:
print(
f"[{get_current_time_str()}] 客户端{self.client_ip}:检测到违规 - 类型: {violation_type}, 详情: {details}")
# 调用违规次数加一方法
try:
await asyncio.to_thread(increment_alarm_count_by_ip, self.client_ip)
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规次数已+1")
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规次数更新失败 - {str(e)}")
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规 - {violation_type}")
# 违规次数更新(用线程池避免阻塞事件循环)
await loop.run_in_executor(thread_pool, increment_alarm_count_by_ip, self.client_ip)
# 发送危险通知
danger_msg = {
await self.websocket.send_json({
"type": "danger",
"timestamp": get_current_time_str(),
"client_ip": self.client_ip
}
await self.websocket.send_json(danger_msg)
"client_ip": self.client_ip,
"violation_type": violation_type,
"details": details
})
else:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}未检测到违规")
print(f"[{get_current_time_str()}] 客户端{self.client_ip}违规")
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}图像处理错误 - {str(e)}")
print(f"[{get_current_time_str()}] 客户端{self.client_ip}处理错误 - {str(e)}")
finally:
# 6. 无论成功/失败,强制归还模型(核心:释放资源供其他任务使用)
model_pool.return_model(detector)
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:模型已归还(可复用)")
# 全局状态管理
# -------------------------- 全局状态与心跳 --------------------------
connected_clients: Dict[str, ClientConnection] = {}
client_lock = asyncio.Lock() # 保护connected_clients的
client_lock = asyncio.Lock() # 保护客户端字典的异步
heartbeat_task: Optional[asyncio.Task] = None
# 心跳检查
async def heartbeat_checker():
"""心跳检查(移除模型归还逻辑,因模型已任务级归还)"""
while True:
current_time = get_current_time_str()
# 加锁保护字典遍历
async with client_lock:
# 筛选超时客户端
timeout_ips = [ip for ip, conn in connected_clients.items() if not conn.is_alive()]
if timeout_ips:
print(f"[{current_time}] 心跳检查:{len(timeout_ips)}个客户端超时IP{timeout_ips}")
for ip in timeout_ips:
try:
async with client_lock:
conn = connected_clients.get(ip)
if not conn:
continue
if conn.consumer_task and not conn.consumer_task.done():
conn.consumer_task.cancel()
await conn.websocket.close(code=1008, reason="心跳超时")
# 归还模型
conn.release_model()
# 超时设为离线并记录
try:
await asyncio.to_thread(update_online_status_by_ip, ip, 0)
action_data = DeviceActionCreate(client_ip=ip, action=0)
await asyncio.to_thread(add_device_action, action_data)
print(f"[{current_time}] 客户端{ip}:已标记为离线并记录操作")
except Exception as e:
print(f"[{current_time}] 客户端{ip}:离线状态更新失败 - {str(e)}")
finally:
async with client_lock:
connected_clients.pop(ip, None)
else:
for ip in timeout_ips:
async with client_lock:
print(f"[{current_time}] 心跳检查:{len(connected_clients)}个客户端在线")
conn = connected_clients.get(ip)
if not conn:
continue
# 取消消费任务+关闭连接
if conn.consumer_task and not conn.consumer_task.done():
conn.consumer_task.cancel()
await conn.websocket.close(code=1008, reason="心跳超时")
# 标记离线(用线程池)
loop = asyncio.get_running_loop()
await loop.run_in_executor(thread_pool, update_online_status_by_ip, ip, 0)
await loop.run_in_executor(
thread_pool, add_device_action, DeviceActionCreate(client_ip=ip, action=0)
)
connected_clients.pop(ip)
print(f"[{current_time}] 客户端{ip}:超时离线(资源已清理)")
# 打印在线状态
async with client_lock:
print(f"[{current_time}] 心跳检查:{len(connected_clients)}个客户端在线")
await asyncio.sleep(HEARTBEAT_INTERVAL)
# 应用生命周期管理
# -------------------------- 应用生命周期核心修改5管理线程池 --------------------------
@asynccontextmanager
async def lifespan(app: FastAPI):
global heartbeat_task
# 启动心跳任务
heartbeat_task = asyncio.create_task(heartbeat_checker())
print(f"[{get_current_time_str()}] 全局心跳检查任务启动(任务ID{id(heartbeat_task)}")
yield
print(f"[{get_current_time_str()}] 心跳任务启动ID{id(heartbeat_task)}")
print(f"[{get_current_time_str()}] 线程池启动(最大线程数:{THREAD_POOL_SIZE}")
yield # 应用运行期间
# 清理资源
if heartbeat_task and not heartbeat_task.done():
heartbeat_task.cancel()
try:
await heartbeat_task
print(f"[{get_current_time_str()}] 全局心跳检查任务已取消")
except asyncio.CancelledError:
pass
await heartbeat_task
print(f"[{get_current_time_str()}] 心跳任务已关闭")
# 关闭线程池(等待所有任务完成)
thread_pool.shutdown(wait=True)
print(f"[{get_current_time_str()}] 线程池已关闭")
# 消息处理工具函数
async def send_heartbeat_ack(conn: ClientConnection):
try:
heartbeat_ack_msg = {
"type": "heart",
"timestamp": get_current_time_str(),
"client_ip": conn.client_ip
}
await conn.websocket.send_json(heartbeat_ack_msg)
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:已发送心跳确认")
return True
except Exception as e:
async with client_lock:
connected_clients.pop(conn.client_ip, None)
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:心跳确认发送失败 - {str(e)}")
return False
async def handle_text_msg(conn: ClientConnection, text: str):
try:
msg = json.loads(text)
if msg.get("type") == "heart":
conn.update_heartbeat()
await send_heartbeat_ack(conn)
else:
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:未知文本消息类型({msg.get('type')}")
except json.JSONDecodeError:
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}无效JSON文本消息")
async def handle_binary_msg(conn: ClientConnection, data: bytes):
try:
conn.frame_queue.put_nowait(data)
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:图像数据({len(data)}字节)已加入队列")
except asyncio.QueueFull:
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:帧队列已满,丢弃当前图像数据")
# WebSocket路由配置
# -------------------------- WebSocket路由 --------------------------
ws_router = APIRouter()
@ws_router.websocket(WS_ENDPOINT)
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
client_ip = websocket.client.host if websocket.client else "unknown_ip"
current_time = get_current_time_str()
print(f"[{current_time}] 客户端{client_ip}WebSocket连接建立")
print(f"[{current_time}] 客户端{client_ip}:连接建立")
is_online_updated = False
new_conn = None
is_online_updated = False
try:
# 处理重复连接
# 处理重复连接(关闭旧连接)
async with client_lock:
if client_ip in connected_clients:
old_conn = connected_clients[client_ip]
if old_conn.consumer_task and not old_conn.consumer_task.done():
old_conn.consumer_task.cancel()
await old_conn.websocket.close(code=1008, reason="同一IP新连接建立")
old_conn.release_model() # 归还旧连接的模型
await old_conn.websocket.close(code=1008, reason="新连接抢占")
connected_clients.pop(client_ip)
print(f"[{current_time}] 客户端{client_ip}:已关闭旧连接并回收模型")
print(f"[{current_time}] 客户端{client_ip}旧连接已关闭")
# 注册新连接
# 创建新连接+启动消费任务
new_conn = ClientConnection(websocket, client_ip)
async with client_lock:
connected_clients[client_ip] = new_conn
new_conn.start_consumer()
# 初始许可:连接建立后立即发一次
# 初始发送帧许可(让客户端立即发帧)
await new_conn.send_frame_permit()
# 标记上线并记录
try:
await asyncio.to_thread(update_online_status_by_ip, client_ip, 1)
action_data = DeviceActionCreate(client_ip=client_ip, action=1)
await asyncio.to_thread(add_device_action, action_data)
print(f"[{current_time}] 客户端{client_ip}:已标记为在线并记录操作")
is_online_updated = True
except Exception as e:
print(f"[{current_time}] 客户端{client_ip}:上线状态更新失败 - {str(e)}")
# 标记客户端在线
loop = asyncio.get_running_loop()
await loop.run_in_executor(thread_pool, update_online_status_by_ip, client_ip, 1)
await loop.run_in_executor(
thread_pool, add_device_action, DeviceActionCreate(client_ip=client_ip, action=1)
)
is_online_updated = True
async with client_lock:
print(f"[{current_time}] 客户端{client_ip}:新连接注册成功,在线数:{len(connected_clients)}")
connected_clients[client_ip] = new_conn
print(f"[{current_time}] 客户端{client_ip}:注册成功(在线数:{len(connected_clients)}")
# 消息循环
# 消息循环(接收文本/二进制帧)
while True:
data = await websocket.receive()
if "text" in data:
await handle_text_msg(new_conn, data["text"])
# 处理文本消息(如心跳)
try:
msg = json.loads(data["text"])
if msg.get("type") == "heart":
new_conn.update_heartbeat()
# 回复心跳确认
await websocket.send_json({
"type": "heart",
"timestamp": get_current_time_str(),
"client_ip": client_ip
})
except json.JSONDecodeError:
print(f"[{get_current_time_str()}] 客户端{client_ip}无效JSON")
elif "bytes" in data:
await handle_binary_msg(new_conn, data["bytes"])
# 处理二进制帧(图像)
try:
await new_conn.frame_queue.put(data["bytes"])
print(f"[{get_current_time_str()}] 客户端{client_ip}:帧已入队(队列大小:{new_conn.frame_queue.qsize()}")
except asyncio.QueueFull:
print(f"[{get_current_time_str()}] 客户端{client_ip}:帧队列满(丢弃当前帧)")
except WebSocketDisconnect as e:
print(f"[{get_current_time_str()}] 客户端{client_ip}:主动断开连接(代码:{e.code}")
print(f"[{get_current_time_str()}] 客户端{client_ip}:主动断开(代码:{e.code}")
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{client_ip}:连接异常 - {str(e)[:50]}")
finally:
# 清理资源并标记离线
# 清理资源无需归还模型已在process_frame中归还
if new_conn and client_ip in connected_clients:
async with client_lock:
conn = connected_clients.get(client_ip)
if conn:
if conn.consumer_task and not conn.consumer_task.done():
conn.consumer_task.cancel()
# 归还模型到模型池
conn.release_model()
# 主动/异常断开时标记离线
# 标记离线(仅当在线状态已更新时)
if is_online_updated:
try:
await asyncio.to_thread(update_online_status_by_ip, client_ip, 0)
action_data = DeviceActionCreate(client_ip=client_ip, action=0)
await asyncio.to_thread(add_device_action, action_data)
print(f"[{get_current_time_str()}] 客户端{client_ip}:断开后已标记为离线")
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{client_ip}:断开后离线更新失败 - {str(e)}")
connected_clients.pop(client_ip, None)
loop = asyncio.get_running_loop()
await loop.run_in_executor(thread_pool, update_online_status_by_ip, client_ip, 0)
await loop.run_in_executor(
thread_pool, add_device_action, DeviceActionCreate(client_ip=client_ip, action=0)
)
connected_clients.pop(client_ip)
async with client_lock:
print(f"[{get_current_time_str()}] 客户端{client_ip}:资源清理在线数:{len(connected_clients)}")
# 创建FastAPI应用
app = FastAPI(lifespan=lifespan)
app.include_router(ws_router)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
print(f"[{get_current_time_str()}] 客户端{client_ip}:资源清理完成(在线数:{len(connected_clients)}")