import asyncio import datetime import json import os from contextlib import asynccontextmanager from typing import Dict, Optional, AsyncGenerator from service.device_service import update_online_status_by_ip, increment_alarm_count_by_ip from service.device_action_service import add_device_action from schema.device_action_schema import DeviceActionCreate import cv2 import numpy as np from fastapi import WebSocket, APIRouter, WebSocketDisconnect, FastAPI from queue import Queue from threading import Lock from ocr.model_violation_detector import MultiModelViolationDetector # 配置文件路径(建议实际部署时改为相对路径或环境变量) YOLO_MODEL_PATH = r"D:\Git\bin\video\ocr\models\best.pt" OCR_CONFIG_PATH = r"D:\Git\bin\video\ocr\config\1.yaml" # 模型池配置(根据GPU显存调整,每个模型约占1G显存) MODEL_POOL_SIZE = 3 # 最大并发客户端数 # 配置常量 HEARTBEAT_INTERVAL = 30 # 心跳检查间隔(秒) HEARTBEAT_TIMEOUT = 600 # 客户端超时阈值(秒) WS_ENDPOINT = "/ws" # WebSocket端点路径 FRAME_QUEUE_SIZE = 1 # 帧队列大小限制 # 工具函数:获取格式化时间字符串 def get_current_time_str() -> str: return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") def get_current_time_file_str() -> str: return datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f") # 模型池实现 - 提前初始化固定数量的模型实例 class ModelPool: def __init__(self, pool_size: int = MODEL_POOL_SIZE): self.pool = Queue(maxsize=pool_size) self.lock = Lock() # 提前初始化模型实例(显存会在此阶段预分配) for i in range(pool_size): detector = MultiModelViolationDetector( ocr_config_path=OCR_CONFIG_PATH, yolo_model_path=YOLO_MODEL_PATH, ocr_confidence_threshold=0.5 ) self.pool.put(detector) print(f"[{get_current_time_str()}] 模型池初始化:第{i + 1}/{pool_size}个模型加载完成") def get_model(self) -> MultiModelViolationDetector: """从池子里获取模型(阻塞直到有可用实例)""" with self.lock: return self.pool.get() def return_model(self, detector: MultiModelViolationDetector): """将模型归还给池子""" with self.lock: self.pool.put(detector) # 初始化模型池(程序启动时加载所有模型,显存会一次性占用 MODEL_POOL_SIZE * 单模型显存) model_pool = ModelPool(pool_size=MODEL_POOL_SIZE) # 客户端连接封装 class ClientConnection: def __init__(self, websocket: WebSocket, client_ip: str): self.websocket = websocket self.client_ip = client_ip self.last_heartbeat = datetime.datetime.now() self.frame_queue = asyncio.Queue(maxsize=FRAME_QUEUE_SIZE) self.consumer_task: Optional[asyncio.Task] = None # 从模型池获取专属模型(每个客户端独立占用一个模型实例) self.detector = model_pool.get_model() print(f"[{get_current_time_str()}] 客户端{self.client_ip}:已获取模型池中的模型实例(显存独立)") def update_heartbeat(self): """更新心跳时间""" self.last_heartbeat = datetime.datetime.now() def is_alive(self) -> bool: """判断客户端是否存活""" timeout = (datetime.datetime.now() - self.last_heartbeat).total_seconds() return timeout < HEARTBEAT_TIMEOUT def start_consumer(self): """启动帧消费任务""" self.consumer_task = asyncio.create_task(self.consume_frames()) return self.consumer_task def release_model(self): """客户端断开时归还模型到池""" model_pool.return_model(self.detector) print(f"[{get_current_time_str()}] 客户端{self.client_ip}:模型已归还至模型池(显存可复用)") async def send_frame_permit(self): """发送帧发送许可信号""" try: frame_permit_msg = { "type": "frame", "timestamp": get_current_time_str(), "client_ip": self.client_ip } await self.websocket.send_json(frame_permit_msg) print(f"[{get_current_time_str()}] 客户端{self.client_ip}:已发送帧发送许可信号") except Exception as e: print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧许可信号发送失败 - {str(e)}") async def consume_frames(self) -> None: """消费队列中的帧并处理(并行执行核心)""" try: while True: # 1. 从队列取出帧 frame_data = await self.frame_queue.get() # 2. 立即发送下一帧许可 await self.send_frame_permit() try: # 3. 并行处理帧:用线程池执行AI检测(真正并发) await self.process_frame(frame_data) finally: self.frame_queue.task_done() except asyncio.CancelledError: print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧消费任务已取消") except Exception as e: print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧消费逻辑错误 - {str(e)}") async def process_frame(self, frame_data: bytes) -> None: """处理单帧图像数据(使用客户端专属模型)""" # 二进制数据转OpenCV图像 nparr = np.frombuffer(frame_data, np.uint8) img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) if img is None: print(f"[{get_current_time_str()}] 客户端{self.client_ip}:无法解析图像数据") return # 确保图像保存目录存在 os.makedirs('images', exist_ok=True) # 保存图像 filename = f"images/{self.client_ip.replace('.', '_')}_{get_current_time_file_str()}.jpg" try: cv2.imwrite(filename, img) print(f"[{get_current_time_str()}] 图像已保存至:{filename}") # 关键修改:使用客户端专属模型 + 线程池并行执行AI检测 has_violation, violation_type, details = await asyncio.to_thread( self.detector.detect_violations, # 客户端独立模型 img # 输入图像 ) if has_violation: print( f"[{get_current_time_str()}] 客户端{self.client_ip}:检测到违规 - 类型: {violation_type}, 详情: {details}") # 调用违规次数加一方法 try: await asyncio.to_thread(increment_alarm_count_by_ip, self.client_ip) print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规次数已+1") except Exception as e: print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规次数更新失败 - {str(e)}") # 发送危险通知 danger_msg = { "type": "danger", "timestamp": get_current_time_str(), "client_ip": self.client_ip } await self.websocket.send_json(danger_msg) else: print(f"[{get_current_time_str()}] 客户端{self.client_ip}:未检测到违规") except Exception as e: print(f"[{get_current_time_str()}] 客户端{self.client_ip}:图像处理错误 - {str(e)}") # 全局状态管理 connected_clients: Dict[str, ClientConnection] = {} client_lock = asyncio.Lock() # 保护connected_clients的锁 heartbeat_task: Optional[asyncio.Task] = None # 心跳检查 async def heartbeat_checker(): while True: current_time = get_current_time_str() # 加锁保护字典遍历 async with client_lock: timeout_ips = [ip for ip, conn in connected_clients.items() if not conn.is_alive()] if timeout_ips: print(f"[{current_time}] 心跳检查:{len(timeout_ips)}个客户端超时(IP:{timeout_ips})") for ip in timeout_ips: try: async with client_lock: conn = connected_clients.get(ip) if not conn: continue if conn.consumer_task and not conn.consumer_task.done(): conn.consumer_task.cancel() await conn.websocket.close(code=1008, reason="心跳超时") # 归还模型 conn.release_model() # 超时设为离线并记录 try: await asyncio.to_thread(update_online_status_by_ip, ip, 0) action_data = DeviceActionCreate(client_ip=ip, action=0) await asyncio.to_thread(add_device_action, action_data) print(f"[{current_time}] 客户端{ip}:已标记为离线并记录操作") except Exception as e: print(f"[{current_time}] 客户端{ip}:离线状态更新失败 - {str(e)}") finally: async with client_lock: connected_clients.pop(ip, None) else: async with client_lock: print(f"[{current_time}] 心跳检查:{len(connected_clients)}个客户端在线") await asyncio.sleep(HEARTBEAT_INTERVAL) # 应用生命周期管理 @asynccontextmanager async def lifespan(app: FastAPI): global heartbeat_task heartbeat_task = asyncio.create_task(heartbeat_checker()) print(f"[{get_current_time_str()}] 全局心跳检查任务启动(任务ID:{id(heartbeat_task)})") yield if heartbeat_task and not heartbeat_task.done(): heartbeat_task.cancel() try: await heartbeat_task print(f"[{get_current_time_str()}] 全局心跳检查任务已取消") except asyncio.CancelledError: pass # 消息处理工具函数 async def send_heartbeat_ack(conn: ClientConnection): try: heartbeat_ack_msg = { "type": "heart", "timestamp": get_current_time_str(), "client_ip": conn.client_ip } await conn.websocket.send_json(heartbeat_ack_msg) print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:已发送心跳确认") return True except Exception as e: async with client_lock: connected_clients.pop(conn.client_ip, None) print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:心跳确认发送失败 - {str(e)}") return False async def handle_text_msg(conn: ClientConnection, text: str): try: msg = json.loads(text) if msg.get("type") == "heart": conn.update_heartbeat() await send_heartbeat_ack(conn) else: print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:未知文本消息类型({msg.get('type')})") except json.JSONDecodeError: print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:无效JSON文本消息") async def handle_binary_msg(conn: ClientConnection, data: bytes): try: conn.frame_queue.put_nowait(data) print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:图像数据({len(data)}字节)已加入队列") except asyncio.QueueFull: print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:帧队列已满,丢弃当前图像数据") # WebSocket路由配置 ws_router = APIRouter() @ws_router.websocket(WS_ENDPOINT) async def websocket_endpoint(websocket: WebSocket): await websocket.accept() client_ip = websocket.client.host if websocket.client else "unknown_ip" current_time = get_current_time_str() print(f"[{current_time}] 客户端{client_ip}:WebSocket连接已建立") is_online_updated = False new_conn = None try: # 处理重复连接 async with client_lock: if client_ip in connected_clients: old_conn = connected_clients[client_ip] if old_conn.consumer_task and not old_conn.consumer_task.done(): old_conn.consumer_task.cancel() await old_conn.websocket.close(code=1008, reason="同一IP新连接建立") old_conn.release_model() # 归还旧连接的模型 connected_clients.pop(client_ip) print(f"[{current_time}] 客户端{client_ip}:已关闭旧连接并回收模型") # 注册新连接 new_conn = ClientConnection(websocket, client_ip) async with client_lock: connected_clients[client_ip] = new_conn new_conn.start_consumer() # 初始许可:连接建立后立即发一次 await new_conn.send_frame_permit() # 标记上线并记录 try: await asyncio.to_thread(update_online_status_by_ip, client_ip, 1) action_data = DeviceActionCreate(client_ip=client_ip, action=1) await asyncio.to_thread(add_device_action, action_data) print(f"[{current_time}] 客户端{client_ip}:已标记为在线并记录操作") is_online_updated = True except Exception as e: print(f"[{current_time}] 客户端{client_ip}:上线状态更新失败 - {str(e)}") async with client_lock: print(f"[{current_time}] 客户端{client_ip}:新连接注册成功,在线数:{len(connected_clients)}") # 消息循环 while True: data = await websocket.receive() if "text" in data: await handle_text_msg(new_conn, data["text"]) elif "bytes" in data: await handle_binary_msg(new_conn, data["bytes"]) except WebSocketDisconnect as e: print(f"[{get_current_time_str()}] 客户端{client_ip}:主动断开连接(代码:{e.code})") except Exception as e: print(f"[{get_current_time_str()}] 客户端{client_ip}:连接异常 - {str(e)[:50]}") finally: # 清理资源并标记离线 if new_conn and client_ip in connected_clients: async with client_lock: conn = connected_clients.get(client_ip) if conn: if conn.consumer_task and not conn.consumer_task.done(): conn.consumer_task.cancel() # 归还模型到模型池 conn.release_model() # 主动/异常断开时标记离线 if is_online_updated: try: await asyncio.to_thread(update_online_status_by_ip, client_ip, 0) action_data = DeviceActionCreate(client_ip=client_ip, action=0) await asyncio.to_thread(add_device_action, action_data) print(f"[{get_current_time_str()}] 客户端{client_ip}:断开后已标记为离线") except Exception as e: print(f"[{get_current_time_str()}] 客户端{client_ip}:断开后离线更新失败 - {str(e)}") connected_clients.pop(client_ip, None) async with client_lock: print(f"[{get_current_time_str()}] 客户端{client_ip}:资源已清理,在线数:{len(connected_clients)}") # 创建FastAPI应用 app = FastAPI(lifespan=lifespan) app.include_router(ws_router) if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)