import os import cv2 from rapidocr import RapidOCR class OCRViolationDetector: """ 封装RapidOCR引擎,用于检测图像帧中的违禁词。 核心功能:加载违禁词、初始化OCR引擎、单帧图像违禁词检测 """ def __init__(self, forbidden_words_path: str, ocr_config_path: str, ocr_confidence_threshold: float = 0.5): """ 初始化OCR引擎和违禁词列表。 Args: forbidden_words_path (str): 违禁词列表 .txt 文件的路径。 ocr_config_path (str): OCR配置文件(如1.yaml)的路径。 ocr_confidence_threshold (float): OCR识别结果的置信度阈值(0~1)。 """ # 加载违禁词 self.forbidden_words = self._load_forbidden_words(forbidden_words_path) # 初始化RapidOCR引擎 self.ocr_engine = self._initialize_ocr(ocr_config_path) # 校验核心依赖是否就绪 self._check_dependencies() # 设置置信度阈值(限制在0~1范围) self.OCR_CONFIDENCE_THRESHOLD = max(0.0, min(ocr_confidence_threshold, 1.0)) print(f"OCR置信度阈值已设置(范围0~1): {self.OCR_CONFIDENCE_THRESHOLD:.4f}") def _load_forbidden_words(self, path: str) -> set: """ 从TXT文件加载违禁词(去重、过滤空行,支持UTF-8编码) """ forbidden_words = set() # 检查文件是否存在 if not os.path.exists(path): print(f"错误:违禁词文件不存在: {path}") return forbidden_words # 读取文件并处理内容 try: with open(path, 'r', encoding='utf-8') as f: forbidden_words = { line.strip() for line in f if line.strip() # 跳过空行或纯空格行 } print(f"成功加载违禁词: {len(forbidden_words)} 个(已去重)") except UnicodeDecodeError: print(f"错误:违禁词文件编码错误(需UTF-8): {path}") except PermissionError: print(f"错误:无权限读取违禁词文件: {path}") except Exception as e: print(f"错误:加载违禁词失败: {str(e)}") return forbidden_words def _initialize_ocr(self, config_path: str) -> RapidOCR | None: """ 初始化RapidOCR引擎(校验配置文件、捕获初始化异常) """ print("开始初始化RapidOCR引擎...") # 检查配置文件是否存在 if not os.path.exists(config_path): print(f"错误:OCR配置文件不存在: {config_path}") return None # 初始化OCR引擎 try: ocr_engine = RapidOCR(config_path=config_path) print("RapidOCR引擎初始化成功") return ocr_engine except ImportError: print("错误:RapidOCR依赖未安装(需执行:pip install rapidocr-onnxruntime)") except Exception as e: print(f"错误:RapidOCR初始化失败: {str(e)}") return None def _check_dependencies(self) -> None: """校验OCR引擎和违禁词列表是否就绪""" if not self.ocr_engine: print("警告:⚠️ OCR引擎未就绪,违禁词检测功能将禁用") if not self.forbidden_words: print("警告:⚠️ 违禁词列表为空,违禁词检测功能将禁用") def detect(self, frame) -> tuple[bool, list, list]: """ 对单帧图像进行OCR违禁词检测(核心方法) Args: frame: 输入图像帧(NumPy数组,BGR格式,cv2读取的图像)。 Returns: tuple[bool, list, list]: - 第一个元素:是否检测到违禁词(True/False); - 第二个元素:检测到的违禁词列表(空列表表示无违禁词); - 第三个元素:对应违禁词的置信度列表(与违禁词列表一一对应)。 """ # 初始化返回结果 has_violation = False violation_words = [] violation_confs = [] # 前置校验 if frame is None or frame.size == 0: print("警告:输入图像帧为空或无效,跳过OCR检测") return has_violation, violation_words, violation_confs if not self.ocr_engine or not self.forbidden_words: print("OCR引擎未就绪或违禁词为空,跳过OCR检测") return has_violation, violation_words, violation_confs try: # 执行OCR识别 print("开始执行OCR识别...") ocr_result = self.ocr_engine(frame) print(f"RapidOCR原始结果: {ocr_result}") # 校验OCR结果是否有效 if ocr_result is None: print("OCR识别未返回任何结果(图像无文本或识别失败)") return has_violation, violation_words, violation_confs # 检查txts和scores是否存在且不为None if not hasattr(ocr_result, 'txts') or ocr_result.txts is None: print("警告:OCR结果中txts为None或不存在") return has_violation, violation_words, violation_confs if not hasattr(ocr_result, 'scores') or ocr_result.scores is None: print("警告:OCR结果中scores为None或不存在") return has_violation, violation_words, violation_confs # 转为列表并去None if not isinstance(ocr_result.txts, (list, tuple)): print(f"警告:OCR txts不是可迭代类型,实际类型: {type(ocr_result.txts)}") texts = [] else: texts = [txt.strip() for txt in ocr_result.txts if txt and isinstance(txt, str)] if not isinstance(ocr_result.scores, (list, tuple)): print(f"警告:OCR scores不是可迭代类型,实际类型: {type(ocr_result.scores)}") confidences = [] else: confidences = [conf for conf in ocr_result.scores if conf and isinstance(conf, (int, float))] # 校验文本和置信度列表长度是否一致 if len(texts) != len(confidences): print(f"警告:OCR文本与置信度数量不匹配(文本{len(texts)}个,置信度{len(confidences)}个),跳过检测") return has_violation, violation_words, violation_confs if len(texts) == 0: print("OCR未识别到任何有效文本") return has_violation, violation_words, violation_confs # 遍历识别结果,筛选违禁词 print(f"开始筛选违禁词(阈值{self.OCR_CONFIDENCE_THRESHOLD:.4f})") for text, conf in zip(texts, confidences): if conf < self.OCR_CONFIDENCE_THRESHOLD: print(f"文本 '{text}' 置信度{conf:.4f} < 阈值,跳过") continue matched_words = [word for word in self.forbidden_words if word in text] if matched_words: has_violation = True violation_words.extend(matched_words) violation_confs.extend([conf] * len(matched_words)) print(f"警告:检测到违禁词: {matched_words}(来源文本: '{text}',置信度: {conf:.4f})") except Exception as e: print(f"错误:OCR检测过程异常: {str(e)}") return has_violation, violation_words, violation_confs