import asyncio from datetime import datetime import aiohttp import cv2 import numpy as np from aiortc import RTCPeerConnection, RTCSessionDescription, RTCConfiguration from ocr.ocr_violation_detector import OCRViolationDetector from ws.ws import send_message_to_client async def rtc_frame_receiver(url, frame_queue, stop_event): """ 接收RTC帧并往队列放入cv2格式的帧数据 当队列已满时直接丢弃新帧,不阻塞等待 当stop_event被设置时停止接收 """ pc = RTCPeerConnection(RTCConfiguration(iceServers=[])) # 累计帧计数器和丢弃帧计数器 total_frames = 0 dropped_frames = 0 @pc.on("track") async def on_track(track): nonlocal total_frames, dropped_frames if track.kind == "video": print("接收到视频轨道、开始接收视频帧") while not stop_event.is_set(): # 检查是否需要停止 # 接收当前帧并累计计数 frame = await track.recv() total_frames += 1 # 转换为cv2兼容的BGR格式numpy数组 frame_cv2 = frame.to_ndarray(format='bgr24') # 验证是否为cv2兼容格式 if isinstance(frame_cv2, np.ndarray) and frame_cv2.ndim == 3 and frame_cv2.shape[2] == 3: # 检查队列是否已满 if frame_queue.full(): # 队列已满,丢弃当前帧 dropped_frames += 1 print(f"第{total_frames}帧:队列已满,丢弃该帧(累计丢弃: {dropped_frames})") else: # 队列未满,放入当前帧 await frame_queue.put(frame_cv2) print(f"第{total_frames}帧:已放入队列") else: print("帧格式转换失败,不是有效的cv2格式") # 创建并设置本地offer offer = await pc.createOffer() print("已创建本地 SDP Offer") await pc.setLocalDescription(offer) # 发送offer到服务器 async with aiohttp.ClientSession() as session: print("开始向服务器发送 SDP Offer") try: async with session.post( url, data=offer.sdp.encode(), headers={ "Content-Type": "application/sdp", "Content-Length": str(len(offer.sdp)) }, ssl=False ) as response: if response.status == 200: print("已接收到服务器的响应、开始处理 SDP Answer") answer_sdp = await response.text() await pc.setRemoteDescription(RTCSessionDescription(sdp=answer_sdp, type='answer')) else: print(f"服务器响应错误: {response.status}") stop_event.set() except Exception as e: print(f"发送SDP Offer失败: {str(e)}") stop_event.set() try: # 保持连接,直到收到停止信号 while not stop_event.is_set(): await asyncio.sleep(1) except KeyboardInterrupt: print("用户中断") finally: print(f"开始关闭 RTCPeerConnection,共接收{total_frames}帧,丢弃{dropped_frames}帧") await pc.close() print("已关闭 RTCPeerConnection") async def frame_consumer(ip, frame_queue, stop_event): """ 从队列中阻塞读取cv2帧并处理(队列为空时阻塞等待) 检测到违规内容后设置stop_event以终止所有任务 """ # 创建OCR检测器实例 ocr_detector = OCRViolationDetector( forbidden_words_path=r"D:\Git\bin\video\ocr\forbidden_words.txt", ocr_confidence_threshold=0.5, ) while not stop_event.is_set(): # 检查是否需要停止 try: # 阻塞等待队列中的帧 current_frame = await frame_queue.get() # 进行OCR检测 has_violation, words, confidences = ocr_detector.detect(current_frame) print(f"检测结果: {'有违规内容' if has_violation else '无违规内容'}") print(f"检测到的词: {words}") print(f"置信度: {confidences}") # 输出所有检测到的违禁词 if has_violation: print(f"测试结果:图片中共检测到 {len(words)} 个违禁词:") response_data = { "status": "stop", "timestamp": datetime.now().isoformat(), "violations": [{"word": w, "confidence": c} for w, c in zip(words, confidences)] } await send_message_to_client(ip, response_data) for word, conf in zip(words, confidences): print(f"- {word}(置信度:{conf:.4f})") # 检测到违规,设置停止事件 print("检测到违规内容,准备关闭AI检测") stop_event.set() # 标记任务完成,允许生产者放入新的帧 frame_queue.task_done() except Exception as e: print(f"处理帧时发生错误: {str(e)}") frame_queue.task_done() def process_webrtc_stream(ip, webrtc_url): """ 处理WEBRTC流并持续打印OCR检测结果,检测到违规后关闭 队列大小为1,满时直接丢弃新帧 Args: ip: IP地址 webrtc_url: WEBRTC服务器地址 """ # 创建队列(大小为1)和停止事件 frame_queue = asyncio.Queue(maxsize=1) # 只存储一帧 stop_event = asyncio.Event() # 用于控制任务停止的事件 # 定义事件循环中的主任务 async def main_task(): # 创建任务 receiver_task = asyncio.create_task(rtc_frame_receiver(webrtc_url, frame_queue, stop_event)) consumer_task = asyncio.create_task(frame_consumer(ip, frame_queue, stop_event)) # 等待任务完成 await asyncio.gather(receiver_task, consumer_task) # 确保队列处理完毕 await frame_queue.join() try: # 运行事件循环 asyncio.run(main_task()) except KeyboardInterrupt: print("用户中断处理流程") stop_event.set() finally: # 确保关闭所有cv2窗口 cv2.destroyAllWindows() print("AI检测已关闭")