156 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			156 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import cv2
 | ||
| import numpy as np
 | ||
| import insightface
 | ||
| from insightface.app import FaceAnalysis
 | ||
| from io import BytesIO
 | ||
| from PIL import Image
 | ||
| import logging
 | ||
| 
 | ||
| # 配置日志(便于排查)
 | ||
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - [FaceUtil] - %(levelname)s - %(message)s')
 | ||
| logger = logging.getLogger(__name__)
 | ||
| 
 | ||
| # 全局变量存储InsightFace引擎和特征列表
 | ||
| _insightface_app = None
 | ||
| _feature_list = []
 | ||
| 
 | ||
| 
 | ||
| def init_insightface():
 | ||
|     """初始化InsightFace引擎(确保成功后再使用)"""
 | ||
|     global _insightface_app
 | ||
|     try:
 | ||
|         if _insightface_app is not None:
 | ||
|             logger.info("InsightFace引擎已初始化,无需重复执行")
 | ||
|             return _insightface_app
 | ||
| 
 | ||
|         logger.info("正在初始化InsightFace引擎(模型:buffalo_l)...")
 | ||
|         # 手动指定模型下载路径(避免权限问题,可选)
 | ||
|         app = FaceAnalysis(
 | ||
|             name='buffalo_l',
 | ||
|             root='~/.insightface',  # 模型默认下载路径
 | ||
|             providers=['CPUExecutionProvider']  # 强制用CPU(若有GPU可加'CUDAExecutionProvider')
 | ||
|         )
 | ||
|         app.prepare(ctx_id=0, det_size=(640, 640))  # det_size越大,小人脸检测越准
 | ||
|         logger.info("InsightFace引擎初始化完成")
 | ||
|         _insightface_app = app
 | ||
|         return app
 | ||
|     except Exception as e:
 | ||
|         logger.error(f"InsightFace初始化失败:{str(e)}", exc_info=True)  # 打印详细堆栈
 | ||
|         _insightface_app = None
 | ||
|         return None
 | ||
| 
 | ||
| 
 | ||
| def add_binary_data(binary_data):
 | ||
|     """
 | ||
|     接收单张图片的二进制数据、提取特征并保存
 | ||
|     返回:(True, 特征值numpy数组) 或 (False, 错误信息字符串)
 | ||
|     """
 | ||
|     global _insightface_app, _feature_list
 | ||
| 
 | ||
|     # 1. 先检查引擎是否初始化成功
 | ||
|     if not _insightface_app:
 | ||
|         init_result = init_insightface()  # 尝试重新初始化
 | ||
|         if not init_result:
 | ||
|             error_msg = "InsightFace引擎未初始化,无法检测人脸"
 | ||
|             logger.error(error_msg)
 | ||
|             return False, error_msg
 | ||
| 
 | ||
|     try:
 | ||
|         # 2. 验证二进制数据有效性
 | ||
|         if len(binary_data) < 1024:  # 过滤过小的无效图片(小于1KB)
 | ||
|             error_msg = f"图片过小({len(binary_data)}字节),可能不是有效图片"
 | ||
|             logger.warning(error_msg)
 | ||
|             return False, error_msg
 | ||
| 
 | ||
|         # 3. 二进制数据转CV2格式(关键步骤,避免通道错误)
 | ||
|         try:
 | ||
|             img = Image.open(BytesIO(binary_data)).convert("RGB")  # 强制转RGB
 | ||
|             frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)  # InsightFace需要BGR格式
 | ||
|         except Exception as e:
 | ||
|             error_msg = f"图片格式转换失败:{str(e)}"
 | ||
|             logger.error(error_msg, exc_info=True)
 | ||
|             return False, error_msg
 | ||
| 
 | ||
|         # 4. 检查图片尺寸(避免极端尺寸导致检测失败)
 | ||
|         height, width = frame.shape[:2]
 | ||
|         if height < 64 or width < 64:  # 人脸检测最小建议尺寸
 | ||
|             error_msg = f"图片尺寸过小({width}x{height}),需至少64x64像素"
 | ||
|             logger.warning(error_msg)
 | ||
|             return False, error_msg
 | ||
| 
 | ||
|         # 5. 调用InsightFace检测人脸
 | ||
|         logger.info(f"开始检测人脸(图片尺寸:{width}x{height},格式:BGR)")
 | ||
|         faces = _insightface_app.get(frame)
 | ||
| 
 | ||
|         if not faces:
 | ||
|             error_msg = "未检测到人脸(请确保图片包含清晰正面人脸,无遮挡、不模糊)"
 | ||
|             logger.warning(error_msg)
 | ||
|             return False, error_msg
 | ||
| 
 | ||
|         # 6. 提取特征并保存
 | ||
|         current_feature = faces[0].embedding
 | ||
|         _feature_list.append(current_feature)
 | ||
|         logger.info(f"人脸检测成功,提取特征值(维度:{current_feature.shape[0]}),累计特征数:{len(_feature_list)}")
 | ||
|         return True, current_feature
 | ||
| 
 | ||
|     except Exception as e:
 | ||
|         error_msg = f"处理图片时发生异常:{str(e)}"
 | ||
|         logger.error(error_msg, exc_info=True)
 | ||
|         return False, error_msg
 | ||
| 
 | ||
| 
 | ||
| # 以下函数保持不变(get_average_feature/clear_features/get_feature_list)
 | ||
| def get_average_feature(features=None):
 | ||
|     global _feature_list
 | ||
|     try:
 | ||
|         if features is None:
 | ||
|             features = _feature_list
 | ||
|         if not isinstance(features, list) or len(features) == 0:
 | ||
|             logger.warning("输入必须是包含至少一个特征值的列表")
 | ||
|             return None
 | ||
| 
 | ||
|         processed_features = []
 | ||
|         for i, embedding in enumerate(features):
 | ||
|             try:
 | ||
|                 if isinstance(embedding, str):
 | ||
|                     embedding_str = embedding.replace('[', '').replace(']', '').replace(',', ' ').strip()
 | ||
|                     embedding_list = [float(num) for num in embedding_str.split() if num.strip()]
 | ||
|                     embedding_np = np.array(embedding_list, dtype=np.float32)
 | ||
|                 else:
 | ||
|                     embedding_np = np.array(embedding, dtype=np.float32)
 | ||
| 
 | ||
|                 if len(embedding_np.shape) == 1:
 | ||
|                     processed_features.append(embedding_np)
 | ||
|                     logger.info(f"已添加第 {i + 1} 个特征值用于计算平均值")
 | ||
|                 else:
 | ||
|                     logger.warning(f"跳过第 {i + 1} 个特征值:不是一维数组")
 | ||
|             except Exception as e:
 | ||
|                 logger.error(f"处理第 {i + 1} 个特征值时出错:{str(e)}")
 | ||
| 
 | ||
|         if not processed_features:
 | ||
|             logger.warning("没有有效的特征值用于计算平均值")
 | ||
|             return None
 | ||
| 
 | ||
|         dims = {feat.shape[0] for feat in processed_features}
 | ||
|         if len(dims) > 1:
 | ||
|             logger.error(f"特征值维度不一致:{dims},无法计算平均值")
 | ||
|             return None
 | ||
| 
 | ||
|         avg_feature = np.mean(processed_features, axis=0)
 | ||
|         logger.info(f"计算成功:{len(processed_features)} 个特征值的平均向量(维度:{avg_feature.shape[0]})")
 | ||
|         return avg_feature
 | ||
|     except Exception as e:
 | ||
|         logger.error(f"计算平均特征值出错:{str(e)}", exc_info=True)
 | ||
|         return None
 | ||
| 
 | ||
| 
 | ||
| def clear_features():
 | ||
|     global _feature_list
 | ||
|     _feature_list = []
 | ||
|     logger.info("已清空所有特征数据")
 | ||
| 
 | ||
| 
 | ||
| def get_feature_list():
 | ||
|     global _feature_list
 | ||
|     logger.info(f"当前特征列表长度:{len(_feature_list)}")
 | ||
|     return _feature_list.copy() |