Files
video/ws/ws.py
2025-09-04 17:29:52 +08:00

383 lines
16 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import asyncio
import datetime
import json
import os
from contextlib import asynccontextmanager
from typing import Dict, Optional, AsyncGenerator
from service.device_service import update_online_status_by_ip, increment_alarm_count_by_ip
from service.device_action_service import add_device_action
from schema.device_action_schema import DeviceActionCreate
import cv2
import numpy as np
from fastapi import WebSocket, APIRouter, WebSocketDisconnect, FastAPI
from queue import Queue
from threading import Lock
from ocr.model_violation_detector import MultiModelViolationDetector
# 配置文件路径(建议实际部署时改为相对路径或环境变量)
YOLO_MODEL_PATH = r"D:\Git\bin\video\ocr\models\best.pt"
OCR_CONFIG_PATH = r"D:\Git\bin\video\ocr\config\1.yaml"
# 模型池配置根据GPU显存调整每个模型约占1G显存
MODEL_POOL_SIZE = 3 # 最大并发客户端数
# 配置常量
HEARTBEAT_INTERVAL = 30 # 心跳检查间隔(秒)
HEARTBEAT_TIMEOUT = 600 # 客户端超时阈值(秒)
WS_ENDPOINT = "/ws" # WebSocket端点路径
FRAME_QUEUE_SIZE = 1 # 帧队列大小限制
# 工具函数:获取格式化时间字符串
def get_current_time_str() -> str:
return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
def get_current_time_file_str() -> str:
return datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
# 模型池实现 - 提前初始化固定数量的模型实例
class ModelPool:
def __init__(self, pool_size: int = MODEL_POOL_SIZE):
self.pool = Queue(maxsize=pool_size)
self.lock = Lock()
# 提前初始化模型实例(显存会在此阶段预分配)
for i in range(pool_size):
detector = MultiModelViolationDetector(
ocr_config_path=OCR_CONFIG_PATH,
yolo_model_path=YOLO_MODEL_PATH,
ocr_confidence_threshold=0.5
)
self.pool.put(detector)
print(f"[{get_current_time_str()}] 模型池初始化:第{i + 1}/{pool_size}个模型加载完成")
def get_model(self) -> MultiModelViolationDetector:
"""从池子里获取模型(阻塞直到有可用实例)"""
with self.lock:
return self.pool.get()
def return_model(self, detector: MultiModelViolationDetector):
"""将模型归还给池子"""
with self.lock:
self.pool.put(detector)
# 初始化模型池(程序启动时加载所有模型,显存会一次性占用 MODEL_POOL_SIZE * 单模型显存)
model_pool = ModelPool(pool_size=MODEL_POOL_SIZE)
# 客户端连接封装
class ClientConnection:
def __init__(self, websocket: WebSocket, client_ip: str):
self.websocket = websocket
self.client_ip = client_ip
self.last_heartbeat = datetime.datetime.now()
self.frame_queue = asyncio.Queue(maxsize=FRAME_QUEUE_SIZE)
self.consumer_task: Optional[asyncio.Task] = None
# 从模型池获取专属模型(每个客户端独立占用一个模型实例)
self.detector = model_pool.get_model()
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:已获取模型池中的模型实例(显存独立)")
def update_heartbeat(self):
"""更新心跳时间"""
self.last_heartbeat = datetime.datetime.now()
def is_alive(self) -> bool:
"""判断客户端是否存活"""
timeout = (datetime.datetime.now() - self.last_heartbeat).total_seconds()
return timeout < HEARTBEAT_TIMEOUT
def start_consumer(self):
"""启动帧消费任务"""
self.consumer_task = asyncio.create_task(self.consume_frames())
return self.consumer_task
def release_model(self):
"""客户端断开时归还模型到池"""
model_pool.return_model(self.detector)
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:模型已归还至模型池(显存可复用)")
async def send_frame_permit(self):
"""发送帧发送许可信号"""
try:
frame_permit_msg = {
"type": "frame",
"timestamp": get_current_time_str(),
"client_ip": self.client_ip
}
await self.websocket.send_json(frame_permit_msg)
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:已发送帧发送许可信号")
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧许可信号发送失败 - {str(e)}")
async def consume_frames(self) -> None:
"""消费队列中的帧并处理(并行执行核心)"""
try:
while True:
# 1. 从队列取出帧
frame_data = await self.frame_queue.get()
# 2. 立即发送下一帧许可
await self.send_frame_permit()
try:
# 3. 并行处理帧用线程池执行AI检测真正并发
await self.process_frame(frame_data)
finally:
self.frame_queue.task_done()
except asyncio.CancelledError:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧消费任务已取消")
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:帧消费逻辑错误 - {str(e)}")
async def process_frame(self, frame_data: bytes) -> None:
"""处理单帧图像数据(使用客户端专属模型)"""
# 二进制数据转OpenCV图像
nparr = np.frombuffer(frame_data, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if img is None:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:无法解析图像数据")
return
# 确保图像保存目录存在
os.makedirs('images', exist_ok=True)
# 保存图像
filename = f"images/{self.client_ip.replace('.', '_')}_{get_current_time_file_str()}.jpg"
try:
cv2.imwrite(filename, img)
print(f"[{get_current_time_str()}] 图像已保存至:{filename}")
# 关键修改:使用客户端专属模型 + 线程池并行执行AI检测
has_violation, violation_type, details = await asyncio.to_thread(
self.detector.detect_violations, # 客户端独立模型
img # 输入图像
)
if has_violation:
print(
f"[{get_current_time_str()}] 客户端{self.client_ip}:检测到违规 - 类型: {violation_type}, 详情: {details}")
# 调用违规次数加一方法
try:
await asyncio.to_thread(increment_alarm_count_by_ip, self.client_ip)
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规次数已+1")
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:违规次数更新失败 - {str(e)}")
# 发送危险通知
danger_msg = {
"type": "danger",
"timestamp": get_current_time_str(),
"client_ip": self.client_ip
}
await self.websocket.send_json(danger_msg)
else:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:未检测到违规")
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{self.client_ip}:图像处理错误 - {str(e)}")
# 全局状态管理
connected_clients: Dict[str, ClientConnection] = {}
client_lock = asyncio.Lock() # 保护connected_clients的锁
heartbeat_task: Optional[asyncio.Task] = None
# 心跳检查
async def heartbeat_checker():
while True:
current_time = get_current_time_str()
# 加锁保护字典遍历
async with client_lock:
timeout_ips = [ip for ip, conn in connected_clients.items() if not conn.is_alive()]
if timeout_ips:
print(f"[{current_time}] 心跳检查:{len(timeout_ips)}个客户端超时IP{timeout_ips}")
for ip in timeout_ips:
try:
async with client_lock:
conn = connected_clients.get(ip)
if not conn:
continue
if conn.consumer_task and not conn.consumer_task.done():
conn.consumer_task.cancel()
await conn.websocket.close(code=1008, reason="心跳超时")
# 归还模型
conn.release_model()
# 超时设为离线并记录
try:
await asyncio.to_thread(update_online_status_by_ip, ip, 0)
action_data = DeviceActionCreate(client_ip=ip, action=0)
await asyncio.to_thread(add_device_action, action_data)
print(f"[{current_time}] 客户端{ip}:已标记为离线并记录操作")
except Exception as e:
print(f"[{current_time}] 客户端{ip}:离线状态更新失败 - {str(e)}")
finally:
async with client_lock:
connected_clients.pop(ip, None)
else:
async with client_lock:
print(f"[{current_time}] 心跳检查:{len(connected_clients)}个客户端在线")
await asyncio.sleep(HEARTBEAT_INTERVAL)
# 应用生命周期管理
@asynccontextmanager
async def lifespan(app: FastAPI):
global heartbeat_task
heartbeat_task = asyncio.create_task(heartbeat_checker())
print(f"[{get_current_time_str()}] 全局心跳检查任务启动任务ID{id(heartbeat_task)}")
yield
if heartbeat_task and not heartbeat_task.done():
heartbeat_task.cancel()
try:
await heartbeat_task
print(f"[{get_current_time_str()}] 全局心跳检查任务已取消")
except asyncio.CancelledError:
pass
# 消息处理工具函数
async def send_heartbeat_ack(conn: ClientConnection):
try:
heartbeat_ack_msg = {
"type": "heart",
"timestamp": get_current_time_str(),
"client_ip": conn.client_ip
}
await conn.websocket.send_json(heartbeat_ack_msg)
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:已发送心跳确认")
return True
except Exception as e:
async with client_lock:
connected_clients.pop(conn.client_ip, None)
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:心跳确认发送失败 - {str(e)}")
return False
async def handle_text_msg(conn: ClientConnection, text: str):
try:
msg = json.loads(text)
if msg.get("type") == "heart":
conn.update_heartbeat()
await send_heartbeat_ack(conn)
else:
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:未知文本消息类型({msg.get('type')}")
except json.JSONDecodeError:
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}无效JSON文本消息")
async def handle_binary_msg(conn: ClientConnection, data: bytes):
try:
conn.frame_queue.put_nowait(data)
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:图像数据({len(data)}字节)已加入队列")
except asyncio.QueueFull:
print(f"[{get_current_time_str()}] 客户端{conn.client_ip}:帧队列已满,丢弃当前图像数据")
# WebSocket路由配置
ws_router = APIRouter()
@ws_router.websocket(WS_ENDPOINT)
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
client_ip = websocket.client.host if websocket.client else "unknown_ip"
current_time = get_current_time_str()
print(f"[{current_time}] 客户端{client_ip}WebSocket连接已建立")
is_online_updated = False
new_conn = None
try:
# 处理重复连接
async with client_lock:
if client_ip in connected_clients:
old_conn = connected_clients[client_ip]
if old_conn.consumer_task and not old_conn.consumer_task.done():
old_conn.consumer_task.cancel()
await old_conn.websocket.close(code=1008, reason="同一IP新连接建立")
old_conn.release_model() # 归还旧连接的模型
connected_clients.pop(client_ip)
print(f"[{current_time}] 客户端{client_ip}:已关闭旧连接并回收模型")
# 注册新连接
new_conn = ClientConnection(websocket, client_ip)
async with client_lock:
connected_clients[client_ip] = new_conn
new_conn.start_consumer()
# 初始许可:连接建立后立即发一次
await new_conn.send_frame_permit()
# 标记上线并记录
try:
await asyncio.to_thread(update_online_status_by_ip, client_ip, 1)
action_data = DeviceActionCreate(client_ip=client_ip, action=1)
await asyncio.to_thread(add_device_action, action_data)
print(f"[{current_time}] 客户端{client_ip}:已标记为在线并记录操作")
is_online_updated = True
except Exception as e:
print(f"[{current_time}] 客户端{client_ip}:上线状态更新失败 - {str(e)}")
async with client_lock:
print(f"[{current_time}] 客户端{client_ip}:新连接注册成功,在线数:{len(connected_clients)}")
# 消息循环
while True:
data = await websocket.receive()
if "text" in data:
await handle_text_msg(new_conn, data["text"])
elif "bytes" in data:
await handle_binary_msg(new_conn, data["bytes"])
except WebSocketDisconnect as e:
print(f"[{get_current_time_str()}] 客户端{client_ip}:主动断开连接(代码:{e.code}")
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{client_ip}:连接异常 - {str(e)[:50]}")
finally:
# 清理资源并标记离线
if new_conn and client_ip in connected_clients:
async with client_lock:
conn = connected_clients.get(client_ip)
if conn:
if conn.consumer_task and not conn.consumer_task.done():
conn.consumer_task.cancel()
# 归还模型到模型池
conn.release_model()
# 主动/异常断开时标记离线
if is_online_updated:
try:
await asyncio.to_thread(update_online_status_by_ip, client_ip, 0)
action_data = DeviceActionCreate(client_ip=client_ip, action=0)
await asyncio.to_thread(add_device_action, action_data)
print(f"[{get_current_time_str()}] 客户端{client_ip}:断开后已标记为离线")
except Exception as e:
print(f"[{get_current_time_str()}] 客户端{client_ip}:断开后离线更新失败 - {str(e)}")
connected_clients.pop(client_ip, None)
async with client_lock:
print(f"[{get_current_time_str()}] 客户端{client_ip}:资源已清理,在线数:{len(connected_clients)}")
# 创建FastAPI应用
app = FastAPI(lifespan=lifespan)
app.include_router(ws_router)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)