326 lines
12 KiB
Python
326 lines
12 KiB
Python
import os
|
||
import numpy as np
|
||
import cv2
|
||
import gc
|
||
import time
|
||
import threading
|
||
from PIL import Image
|
||
from insightface.app import FaceAnalysis
|
||
# 假设service.face_service中get_all_face_name_with_eigenvalue可获取人脸数据
|
||
from service.face_service import get_all_face_name_with_eigenvalue
|
||
|
||
# GPU状态检查支持
|
||
try:
|
||
import pynvml
|
||
|
||
pynvml.nvmlInit()
|
||
_nvml_available = True
|
||
except ImportError:
|
||
print("警告: pynvml库未安装,无法检测GPU状态,默认尝试使用GPU")
|
||
_nvml_available = False
|
||
|
||
# 全局人脸引擎与特征库
|
||
_face_app = None
|
||
_known_faces_embeddings = {} # 姓名 -> 归一化特征值的映射
|
||
_known_faces_names = [] # 已知人脸姓名列表
|
||
|
||
# GPU使用状态标记
|
||
_using_gpu = False # 是否使用GPU
|
||
_used_gpu_id = -1 # 使用的GPU ID(-1表示CPU)
|
||
|
||
# 资源管理变量
|
||
_ref_count = 0 # 引擎引用计数(记录当前使用次数)
|
||
_last_used_time = 0 # 最后一次使用引擎的时间
|
||
_lock = threading.Lock() # 线程安全锁
|
||
_release_timeout = 8 # 闲置超时时间(秒)
|
||
_is_releasing = False # 资源释放中标记
|
||
_monitor_thread_running = False # 监控线程运行标记
|
||
|
||
# 调试计数器
|
||
_debug_counter = {
|
||
"engine_created": 0, # 引擎创建次数
|
||
"engine_released": 0, # 引擎释放次数
|
||
"detection_calls": 0 # 检测函数调用次数
|
||
}
|
||
|
||
|
||
def check_gpu_availability(gpu_id, memory_threshold=0.7):
|
||
"""检查指定GPU的内存使用率是否低于阈值(判定为“可用”)"""
|
||
if not _nvml_available:
|
||
return True
|
||
try:
|
||
handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id)
|
||
mem_info = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
||
memory_usage = mem_info.used / mem_info.total
|
||
return memory_usage < memory_threshold
|
||
except Exception as e:
|
||
print(f"检查GPU {gpu_id} 状态失败: {e}")
|
||
return False
|
||
|
||
|
||
def select_best_gpu(preferred_gpus=[0, 1]):
|
||
"""按优先级选择可用GPU,优先0号;均不可用则返回-1(CPU)"""
|
||
for gpu_id in preferred_gpus:
|
||
try:
|
||
# 验证GPU是否存在
|
||
if _nvml_available:
|
||
pynvml.nvmlDeviceGetHandleByIndex(gpu_id)
|
||
# 验证GPU内存是否充足
|
||
if check_gpu_availability(gpu_id):
|
||
print(f"GPU {gpu_id} 可用,将使用该GPU")
|
||
return gpu_id
|
||
else:
|
||
if gpu_id == 0:
|
||
print("GPU 0 内存使用率过高,尝试其他GPU")
|
||
except Exception as e:
|
||
print(f"GPU {gpu_id} 不可用或访问失败: {e}")
|
||
print("所有指定GPU均不可用,将使用CPU计算")
|
||
return -1
|
||
|
||
|
||
def _release_engine_resources():
|
||
"""释放人脸引擎的所有资源(模型、特征库、GPU缓存等)"""
|
||
global _face_app, _is_releasing, _known_faces_embeddings, _known_faces_names
|
||
if not _face_app or _is_releasing:
|
||
return
|
||
|
||
try:
|
||
_is_releasing = True
|
||
print("开始释放人脸引擎资源...")
|
||
|
||
# 释放InsightFace模型资源
|
||
if hasattr(_face_app, "model"):
|
||
_face_app.model = None # 显式置空模型引用
|
||
_face_app = None # 释放引擎实例
|
||
|
||
# 清空人脸特征库
|
||
_known_faces_embeddings.clear()
|
||
_known_faces_names.clear()
|
||
|
||
_debug_counter["engine_released"] += 1
|
||
print(f"人脸引擎已释放,调试统计: {_debug_counter}")
|
||
|
||
# 强制垃圾回收
|
||
gc.collect()
|
||
|
||
# 清理各深度学习框架的GPU缓存
|
||
# Torch 缓存清理
|
||
try:
|
||
import torch
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
torch.cuda.ipc_collect()
|
||
print("Torch GPU缓存已清理")
|
||
except ImportError:
|
||
pass
|
||
|
||
# TensorFlow 缓存清理
|
||
try:
|
||
import tensorflow as tf
|
||
tf.keras.backend.clear_session()
|
||
print("TensorFlow会话已清理")
|
||
except ImportError:
|
||
pass
|
||
|
||
# MXNet 缓存清理(InsightFace底层常用MXNet)
|
||
try:
|
||
import mxnet as mx
|
||
mx.nd.waitall() # 等待所有计算完成并释放资源
|
||
print("MXNet资源已等待释放")
|
||
except ImportError:
|
||
pass
|
||
|
||
except Exception as e:
|
||
print(f"释放资源过程中出错: {e}")
|
||
finally:
|
||
_is_releasing = False
|
||
|
||
|
||
def _resource_monitor_thread():
|
||
"""后台监控线程:检测引擎闲置超时,触发资源释放"""
|
||
global _ref_count, _last_used_time, _face_app, _monitor_thread_running
|
||
_monitor_thread_running = True
|
||
while _monitor_thread_running:
|
||
time.sleep(2) # 缩短检查间隔,加快闲置检测响应
|
||
with _lock:
|
||
# 当“引擎存在 + 无引用 + 未在释放中”时,检查闲置时间
|
||
if _face_app and _ref_count == 0 and not _is_releasing:
|
||
idle_time = time.time() - _last_used_time
|
||
if idle_time > _release_timeout:
|
||
print(f"引擎闲置超时({idle_time:.1f}s > {_release_timeout}s),释放资源")
|
||
_release_engine_resources()
|
||
|
||
|
||
def load_model(prefer_gpu=True, preferred_gpus=[0, 1]):
|
||
"""加载人脸识别引擎及已知人脸特征库(默认优先用0号GPU)"""
|
||
global _face_app, _known_faces_embeddings, _known_faces_names, _using_gpu, _used_gpu_id
|
||
|
||
# 启动后台监控线程(确保仅启动一次)
|
||
if not _monitor_thread_running:
|
||
threading.Thread(
|
||
target=_resource_monitor_thread,
|
||
daemon=True,
|
||
name="FaceEngineMonitor"
|
||
).start()
|
||
print("人脸引擎监控线程已启动")
|
||
|
||
# 若正在释放资源,等待释放完成
|
||
while _is_releasing:
|
||
time.sleep(0.1)
|
||
|
||
# 若引擎已初始化,直接返回
|
||
if _face_app:
|
||
return True
|
||
|
||
# 初始化InsightFace引擎
|
||
try:
|
||
print("正在初始化InsightFace人脸识别引擎...")
|
||
_face_app = FaceAnalysis(name="buffalo_l", root=os.path.expanduser("~/.insightface"))
|
||
|
||
# 选择GPU(优先用0号)
|
||
ctx_id = 0
|
||
if prefer_gpu:
|
||
ctx_id = select_best_gpu(preferred_gpus)
|
||
_using_gpu = ctx_id != -1
|
||
_used_gpu_id = ctx_id if _using_gpu else -1
|
||
|
||
if _using_gpu:
|
||
print(f"引擎初始化成功,将使用GPU {ctx_id} 计算")
|
||
else:
|
||
print("引擎初始化成功,将使用CPU计算")
|
||
|
||
# 准备模型(加载到指定设备)
|
||
_face_app.prepare(ctx_id=ctx_id, det_size=(640, 640))
|
||
print("InsightFace引擎初始化完成")
|
||
_debug_counter["engine_created"] += 1
|
||
print(f"引擎调试统计: {_debug_counter}")
|
||
|
||
except Exception as e:
|
||
print(f"引擎初始化失败: {e}")
|
||
return False
|
||
|
||
# 从服务加载已知人脸的姓名和特征值
|
||
try:
|
||
face_data = get_all_face_name_with_eigenvalue()
|
||
for person_name, eigenvalue_data in face_data.items():
|
||
# 兼容“numpy数组”和“字符串”格式的特征值
|
||
if isinstance(eigenvalue_data, np.ndarray):
|
||
eigenvalue = eigenvalue_data.astype(np.float32)
|
||
elif isinstance(eigenvalue_data, str):
|
||
# 清理字符串中的括号、换行等干扰符
|
||
cleaned = eigenvalue_data.replace("[", "").replace("]", "").replace("\n", "").strip()
|
||
# 分割并转换为浮点数数组
|
||
values = [v for v in cleaned.split() if v] # 兼容空格/逗号分隔
|
||
eigenvalue = np.array(list(map(float, values)), dtype=np.float32)
|
||
else:
|
||
print(f"不支持的特征值类型({type(eigenvalue_data)}),跳过 {person_name}")
|
||
continue
|
||
|
||
# 特征值归一化(保证后续相似度计算的一致性)
|
||
norm = np.linalg.norm(eigenvalue)
|
||
if norm != 0:
|
||
eigenvalue = eigenvalue / norm
|
||
|
||
_known_faces_embeddings[person_name] = eigenvalue
|
||
_known_faces_names.append(person_name)
|
||
|
||
print(f"成功加载 {len(_known_faces_names)} 个人脸的特征库")
|
||
|
||
except Exception as e:
|
||
print(f"加载人脸特征库失败: {e}")
|
||
|
||
return _face_app is not None
|
||
|
||
|
||
def detect(frame, similarity_threshold=0.4):
|
||
"""
|
||
检测并识别人脸
|
||
返回:(是否匹配到已知人脸, 结果描述字符串)
|
||
"""
|
||
global _face_app, _known_faces_embeddings, _known_faces_names, _ref_count, _last_used_time
|
||
|
||
# 校验输入帧有效性
|
||
if frame is None or frame.size == 0:
|
||
return (False, "无效的输入帧数据")
|
||
|
||
# 加锁并更新引用计数、最后使用时间
|
||
engine = None
|
||
with _lock:
|
||
_ref_count += 1
|
||
_last_used_time = time.time()
|
||
_debug_counter["detection_calls"] += 1
|
||
|
||
# 若引擎未初始化且未在释放中,尝试初始化
|
||
if not _face_app and not _is_releasing:
|
||
if not load_model(prefer_gpu=True):
|
||
# 初始化失败,恢复引用计数
|
||
with _lock:
|
||
_ref_count = max(0, _ref_count - 1)
|
||
return (False, "人脸引擎初始化失败")
|
||
|
||
engine = _face_app # 获取引擎引用
|
||
|
||
# 校验引擎可用性
|
||
if not engine or len(_known_faces_names) == 0:
|
||
with _lock:
|
||
_ref_count = max(0, _ref_count - 1)
|
||
return (False, "人脸引擎不可用或特征库为空")
|
||
|
||
try:
|
||
# GPU计算时,确保帧数据是连续内存(避免CUDA错误)
|
||
if _using_gpu and engine is not None and not frame.flags.contiguous:
|
||
frame = np.ascontiguousarray(frame)
|
||
|
||
# 执行人脸检测与特征提取
|
||
faces = engine.get(frame)
|
||
except Exception as e:
|
||
print(f"人脸检测过程出错: {e}")
|
||
# 出错时尝试重新初始化引擎(可能是GPU状态变化导致)
|
||
print("尝试重新初始化人脸引擎...")
|
||
with _lock:
|
||
_ref_count = max(0, _ref_count - 1)
|
||
load_model(prefer_gpu=True)
|
||
return (False, f"检测错误: {str(e)}")
|
||
|
||
result_parts = []
|
||
has_matched_known_face = False # 是否有任意人脸匹配到已知库
|
||
|
||
for face in faces:
|
||
# 归一化当前检测到的人脸特征
|
||
face_embedding = face.embedding.astype(np.float32)
|
||
norm = np.linalg.norm(face_embedding)
|
||
if norm == 0:
|
||
continue
|
||
face_embedding = face_embedding / norm
|
||
|
||
# 与已知人脸特征逐一比对
|
||
max_similarity, best_match_name = -1.0, "Unknown"
|
||
for name in _known_faces_names:
|
||
known_emb = _known_faces_embeddings[name]
|
||
similarity = np.dot(face_embedding, known_emb) # 余弦相似度
|
||
if similarity > max_similarity:
|
||
max_similarity = similarity
|
||
best_match_name = name
|
||
|
||
# 判断是否匹配成功
|
||
is_matched = max_similarity >= similarity_threshold
|
||
if is_matched:
|
||
has_matched_known_face = True
|
||
|
||
# 记录该人脸的检测结果
|
||
bbox = face.bbox # 人脸边界框
|
||
result_parts.append(
|
||
f"{'匹配' if is_matched else '未匹配'}: {best_match_name} "
|
||
f"(相似度: {max_similarity:.2f}, 边界框: {bbox.astype(int).tolist()})"
|
||
)
|
||
|
||
# 构建最终结果字符串
|
||
result_str = "未检测到人脸" if not result_parts else "; ".join(result_parts)
|
||
|
||
# 释放引用计数(线程安全)
|
||
with _lock:
|
||
_ref_count = max(0, _ref_count - 1)
|
||
# 若仍有引用,更新最后使用时间;若引用为0,也立即标记(加快闲置检测)
|
||
_last_used_time = time.time()
|
||
|
||
return (has_matched_known_face, result_str) |