56 lines
2.3 KiB
Python
56 lines
2.3 KiB
Python
from ultralytics import YOLO
|
||
from service.model_service import get_current_yolo_model # 带版本校验的模型获取
|
||
|
||
|
||
def load_model(model_path=None):
|
||
"""加载YOLO模型(优先使用带版本校验的默认模型)"""
|
||
if model_path is None:
|
||
# 调用带版本校验的模型获取函数(自动判断是否需要重新加载)
|
||
return get_current_yolo_model()
|
||
try:
|
||
# 加载指定路径模型(用于特殊场景)
|
||
return YOLO(model_path)
|
||
except Exception as e:
|
||
print(f"YOLO模型加载失败(指定路径):{str(e)}")
|
||
return None
|
||
|
||
|
||
def detect(frame, conf_threshold=0.7):
|
||
"""执行目标检测(仅模型版本变化时重新加载,平时复用缓存)"""
|
||
# 获取模型(内部已做版本校验,未变化则直接返回缓存)
|
||
current_model = load_model()
|
||
if not current_model:
|
||
return (False, "未加载到最新YOLO模型")
|
||
|
||
if frame is None:
|
||
return (False, "无效输入帧")
|
||
|
||
try:
|
||
# 用当前模型执行检测(复用缓存,无额外加载耗时)
|
||
results = current_model(frame, conf=conf_threshold, verbose=False)
|
||
has_results = len(results[0].boxes) > 0 if results else False
|
||
|
||
if not has_results:
|
||
return (False, "未检测到目标")
|
||
|
||
# 构建结果字符串
|
||
result_parts = []
|
||
for box in results[0].boxes:
|
||
cls = int(box.cls[0])
|
||
conf = float(box.conf[0])
|
||
bbox = [round(x, 2) for x in box.xyxy[0].tolist()] # 保留两位小数
|
||
# 从当前模型中获取类别名(确保与模型匹配)
|
||
class_name = current_model.names[cls] if hasattr(current_model, 'names') else f"类别{cls}"
|
||
result_parts.append(f"{class_name}(置信度:{conf:.2f},位置:{bbox})")
|
||
|
||
# 打印当前使用的模型路径和版本(用于验证)
|
||
# model_path = getattr(current_model, "model_path", "未知路径")
|
||
# from service.model_service import _current_model_version
|
||
# print(f"[YOLO检测] 使用模型:{model_path}(版本:{_current_model_version[:10]}...)")
|
||
|
||
return (True, "; ".join(result_parts))
|
||
|
||
except Exception as e:
|
||
print(f"YOLO检测过程出错:{str(e)}")
|
||
return (False, f"检测错误:{str(e)}")
|