147 lines
5.0 KiB
Python
147 lines
5.0 KiB
Python
import asyncio
|
||
import aiohttp
|
||
import cv2
|
||
import numpy as np
|
||
from aiortc import RTCPeerConnection, RTCSessionDescription, RTCConfiguration
|
||
from aiortc.mediastreams import MediaStreamTrack
|
||
from ocr.ocr_violation_detector import OCRViolationDetector
|
||
|
||
|
||
class VideoTrack(MediaStreamTrack):
|
||
kind = "video"
|
||
|
||
def __init__(self, max_frames=1):
|
||
super().__init__()
|
||
self.frames = asyncio.Queue(maxsize=max_frames)
|
||
|
||
async def recv(self):
|
||
return await super().recv()
|
||
|
||
|
||
async def rtc_frame_receiver(url, frame_queue):
|
||
"""
|
||
对每帧进行检查、只要接收到 RTC 帧且队列为空、就往队列放入cv2格式的帧数据
|
||
"""
|
||
pc = RTCPeerConnection(RTCConfiguration(iceServers=[]))
|
||
video_track = VideoTrack()
|
||
pc.addTrack(video_track)
|
||
|
||
# 累计帧计数器
|
||
total_frames = 0
|
||
|
||
@pc.on("track")
|
||
async def on_track(track):
|
||
nonlocal total_frames
|
||
if track.kind == "video":
|
||
print("接收到视频轨道、开始接收视频帧")
|
||
while True:
|
||
# 接收当前帧并累计计数
|
||
frame = await track.recv()
|
||
# 转换为cv2兼容的BGR格式numpy数组
|
||
frame_cv2 = frame.to_ndarray(format='bgr24')
|
||
|
||
# 验证是否为cv2兼容格式
|
||
if isinstance(frame_cv2, np.ndarray) and frame_cv2.ndim == 3 and frame_cv2.shape[2] == 3:
|
||
total_frames += 1
|
||
|
||
# 对每帧都检查队列状态、队列为空则放入
|
||
if frame_queue.empty():
|
||
# 队列为空、放入当前cv2帧
|
||
await frame_queue.put(frame_cv2)
|
||
# print(f"第{total_frames}帧:队列为空、已放入新的cv2帧,尺寸: {frame_cv2.shape}")
|
||
else:
|
||
# 队列非空、说明上一帧还未处理、跳过当前帧
|
||
print(f"第{total_frames}帧:队列非空、跳过该帧")
|
||
else:
|
||
print("帧格式转换失败,不是有效的cv2格式")
|
||
|
||
# 创建并设置本地offer
|
||
offer = await pc.createOffer()
|
||
print("已创建本地 SDP Offer")
|
||
await pc.setLocalDescription(offer)
|
||
|
||
# 发送offer到服务器
|
||
async with aiohttp.ClientSession() as session:
|
||
print("开始向服务器发送 SDP Offer")
|
||
async with session.post(
|
||
url,
|
||
data=offer.sdp.encode(),
|
||
headers={
|
||
"Content-Type": "application/sdp",
|
||
"Content-Length": str(len(offer.sdp))
|
||
},
|
||
ssl=False
|
||
) as response:
|
||
print("已接收到服务器的响应、开始处理 SDP Answer")
|
||
answer_sdp = await response.text()
|
||
await pc.setRemoteDescription(RTCSessionDescription(sdp=answer_sdp, type='answer'))
|
||
|
||
try:
|
||
# 保持连接
|
||
while True:
|
||
await asyncio.sleep(1)
|
||
except KeyboardInterrupt:
|
||
print("用户中断")
|
||
finally:
|
||
print("开始关闭 RTCPeerConnection")
|
||
await pc.close()
|
||
print("已关闭 RTCPeerConnection")
|
||
|
||
|
||
async def frame_consumer(frame_queue):
|
||
"""
|
||
从队列中读取cv2帧并处理(队列空时会阻塞等待)
|
||
|
||
Args: frame_queue: 帧队列
|
||
"""
|
||
# 创建OCR检测器实例(请替换为实际的违禁词文件路径)
|
||
ocr_detector = OCRViolationDetector(
|
||
forbidden_words_path=r"D:\Git\bin\video\ocr\forbidden_words.txt", # 替换为实际路径
|
||
ocr_confidence_threshold=0.5, )
|
||
|
||
while True:
|
||
# 从队列中获取cv2帧(队列为空时会阻塞等待新帧)
|
||
current_frame = await frame_queue.get()
|
||
has_violation, words, confidences = ocr_detector.detect(current_frame)
|
||
# 输出所有检测到的违禁词
|
||
if has_violation:
|
||
print(f"测试结果:图片中共检测到 {len(words)} 个违禁词:")
|
||
for word, conf in zip(words, confidences):
|
||
print(f"- {word}(置信度:{conf:.4f})")
|
||
else:
|
||
print("测试结果:图片中未检测到违禁词")
|
||
|
||
# 标记任务完成
|
||
frame_queue.task_done()
|
||
# print("帧处理完成、队列已清空")
|
||
|
||
|
||
def process_webrtc_stream(ip, webrtc_url):
|
||
"""
|
||
处理WEBRTC流并持续打印OCR检测结果
|
||
|
||
Args:
|
||
ip: IP地址(预留参数)
|
||
webrtc_url: WEBRTC服务器地址
|
||
"""
|
||
# 创建队列
|
||
frame_queue = asyncio.Queue(maxsize=1)
|
||
|
||
# 定义事件循环中的主任务
|
||
async def main_task():
|
||
# 创建任务
|
||
receiver_task = asyncio.create_task(rtc_frame_receiver(webrtc_url, frame_queue))
|
||
consumer_task = asyncio.create_task(frame_consumer(frame_queue))
|
||
|
||
# 等待任务完成
|
||
await asyncio.gather(receiver_task, consumer_task)
|
||
|
||
try:
|
||
# 运行事件循环
|
||
asyncio.run(main_task())
|
||
except KeyboardInterrupt:
|
||
print("用户中断处理流程")
|
||
finally:
|
||
# 确保关闭所有cv2窗口
|
||
cv2.destroyAllWindows()
|