178 lines
7.5 KiB
Python
178 lines
7.5 KiB
Python
import os
|
||
import cv2
|
||
from rapidocr import RapidOCR
|
||
|
||
|
||
class OCRViolationDetector:
|
||
"""
|
||
封装RapidOCR引擎,用于检测图像帧中的违禁词。
|
||
核心功能:加载违禁词、初始化OCR引擎、单帧图像违禁词检测
|
||
"""
|
||
|
||
def __init__(self,
|
||
forbidden_words_path: str,
|
||
ocr_config_path: str,
|
||
ocr_confidence_threshold: float = 0.5):
|
||
"""
|
||
初始化OCR引擎和违禁词列表。
|
||
|
||
Args:
|
||
forbidden_words_path (str): 违禁词列表 .txt 文件的路径。
|
||
ocr_config_path (str): OCR配置文件(如1.yaml)的路径。
|
||
ocr_confidence_threshold (float): OCR识别结果的置信度阈值(0~1)。
|
||
"""
|
||
# 加载违禁词
|
||
self.forbidden_words = self._load_forbidden_words(forbidden_words_path)
|
||
|
||
# 初始化RapidOCR引擎
|
||
self.ocr_engine = self._initialize_ocr(ocr_config_path)
|
||
|
||
# 校验核心依赖是否就绪
|
||
self._check_dependencies()
|
||
|
||
# 设置置信度阈值(限制在0~1范围)
|
||
self.OCR_CONFIDENCE_THRESHOLD = max(0.0, min(ocr_confidence_threshold, 1.0))
|
||
print(f"OCR置信度阈值已设置(范围0~1): {self.OCR_CONFIDENCE_THRESHOLD:.4f}")
|
||
|
||
def _load_forbidden_words(self, path: str) -> set:
|
||
"""
|
||
从TXT文件加载违禁词(去重、过滤空行,支持UTF-8编码)
|
||
"""
|
||
forbidden_words = set()
|
||
|
||
# 检查文件是否存在
|
||
if not os.path.exists(path):
|
||
print(f"错误:违禁词文件不存在: {path}")
|
||
return forbidden_words
|
||
|
||
# 读取文件并处理内容
|
||
try:
|
||
with open(path, 'r', encoding='utf-8') as f:
|
||
forbidden_words = {
|
||
line.strip() for line in f
|
||
if line.strip() # 跳过空行或纯空格行
|
||
}
|
||
print(f"成功加载违禁词: {len(forbidden_words)} 个(已去重)")
|
||
except UnicodeDecodeError:
|
||
print(f"错误:违禁词文件编码错误(需UTF-8): {path}")
|
||
except PermissionError:
|
||
print(f"错误:无权限读取违禁词文件: {path}")
|
||
except Exception as e:
|
||
print(f"错误:加载违禁词失败: {str(e)}")
|
||
|
||
return forbidden_words
|
||
|
||
def _initialize_ocr(self, config_path: str) -> RapidOCR | None:
|
||
"""
|
||
初始化RapidOCR引擎(校验配置文件、捕获初始化异常)
|
||
"""
|
||
print("开始初始化RapidOCR引擎...")
|
||
|
||
# 检查配置文件是否存在
|
||
if not os.path.exists(config_path):
|
||
print(f"错误:OCR配置文件不存在: {config_path}")
|
||
return None
|
||
|
||
# 初始化OCR引擎
|
||
try:
|
||
ocr_engine = RapidOCR(config_path=config_path)
|
||
print("RapidOCR引擎初始化成功")
|
||
return ocr_engine
|
||
except ImportError:
|
||
print("错误:RapidOCR依赖未安装(需执行:pip install rapidocr-onnxruntime)")
|
||
except Exception as e:
|
||
print(f"错误:RapidOCR初始化失败: {str(e)}")
|
||
|
||
return None
|
||
|
||
def _check_dependencies(self) -> None:
|
||
"""校验OCR引擎和违禁词列表是否就绪"""
|
||
if not self.ocr_engine:
|
||
print("警告:⚠️ OCR引擎未就绪,违禁词检测功能将禁用")
|
||
if not self.forbidden_words:
|
||
print("警告:⚠️ 违禁词列表为空,违禁词检测功能将禁用")
|
||
|
||
def detect(self, frame) -> tuple[bool, list, list]:
|
||
"""
|
||
对单帧图像进行OCR违禁词检测(核心方法)
|
||
|
||
Args:
|
||
frame: 输入图像帧(NumPy数组,BGR格式,cv2读取的图像)。
|
||
|
||
Returns:
|
||
tuple[bool, list, list]:
|
||
- 第一个元素:是否检测到违禁词(True/False);
|
||
- 第二个元素:检测到的违禁词列表(空列表表示无违禁词);
|
||
- 第三个元素:对应违禁词的置信度列表(与违禁词列表一一对应)。
|
||
"""
|
||
# 初始化返回结果
|
||
has_violation = False
|
||
violation_words = []
|
||
violation_confs = []
|
||
|
||
# 前置校验
|
||
if frame is None or frame.size == 0:
|
||
print("警告:输入图像帧为空或无效,跳过OCR检测")
|
||
return has_violation, violation_words, violation_confs
|
||
if not self.ocr_engine or not self.forbidden_words:
|
||
print("OCR引擎未就绪或违禁词为空,跳过OCR检测")
|
||
return has_violation, violation_words, violation_confs
|
||
|
||
try:
|
||
# 执行OCR识别
|
||
print("开始执行OCR识别...")
|
||
ocr_result = self.ocr_engine(frame)
|
||
print(f"RapidOCR原始结果: {ocr_result}")
|
||
|
||
# 校验OCR结果是否有效
|
||
if ocr_result is None:
|
||
print("OCR识别未返回任何结果(图像无文本或识别失败)")
|
||
return has_violation, violation_words, violation_confs
|
||
|
||
# 检查txts和scores是否存在且不为None
|
||
if not hasattr(ocr_result, 'txts') or ocr_result.txts is None:
|
||
print("警告:OCR结果中txts为None或不存在")
|
||
return has_violation, violation_words, violation_confs
|
||
|
||
if not hasattr(ocr_result, 'scores') or ocr_result.scores is None:
|
||
print("警告:OCR结果中scores为None或不存在")
|
||
return has_violation, violation_words, violation_confs
|
||
|
||
# 转为列表并去None
|
||
if not isinstance(ocr_result.txts, (list, tuple)):
|
||
print(f"警告:OCR txts不是可迭代类型,实际类型: {type(ocr_result.txts)}")
|
||
texts = []
|
||
else:
|
||
texts = [txt.strip() for txt in ocr_result.txts if txt and isinstance(txt, str)]
|
||
|
||
if not isinstance(ocr_result.scores, (list, tuple)):
|
||
print(f"警告:OCR scores不是可迭代类型,实际类型: {type(ocr_result.scores)}")
|
||
confidences = []
|
||
else:
|
||
confidences = [conf for conf in ocr_result.scores if conf and isinstance(conf, (int, float))]
|
||
|
||
# 校验文本和置信度列表长度是否一致
|
||
if len(texts) != len(confidences):
|
||
print(f"警告:OCR文本与置信度数量不匹配(文本{len(texts)}个,置信度{len(confidences)}个),跳过检测")
|
||
return has_violation, violation_words, violation_confs
|
||
if len(texts) == 0:
|
||
print("OCR未识别到任何有效文本")
|
||
return has_violation, violation_words, violation_confs
|
||
|
||
# 遍历识别结果,筛选违禁词
|
||
print(f"开始筛选违禁词(阈值{self.OCR_CONFIDENCE_THRESHOLD:.4f})")
|
||
for text, conf in zip(texts, confidences):
|
||
if conf < self.OCR_CONFIDENCE_THRESHOLD:
|
||
print(f"文本 '{text}' 置信度{conf:.4f} < 阈值,跳过")
|
||
continue
|
||
matched_words = [word for word in self.forbidden_words if word in text]
|
||
if matched_words:
|
||
has_violation = True
|
||
violation_words.extend(matched_words)
|
||
violation_confs.extend([conf] * len(matched_words))
|
||
print(f"警告:检测到违禁词: {matched_words}(来源文本: '{text}',置信度: {conf:.4f})")
|
||
|
||
except Exception as e:
|
||
print(f"错误:OCR检测过程异常: {str(e)}")
|
||
|
||
return has_violation, violation_words, violation_confs |