157 lines
5.3 KiB
Python
157 lines
5.3 KiB
Python
import cv2
|
||
import numpy as np
|
||
from PIL.Image import Image
|
||
|
||
from core.ocr import load_model as ocrLoadModel, detect as ocrDetect
|
||
from core.face import load_model as faceLoadModel, detect as faceDetect
|
||
from core.yolo import load_model as yoloLoadModel, detect as yoloDetect
|
||
# 导入保存路径函数(根据实际文件位置调整导入路径)
|
||
import numpy as np
|
||
import base64
|
||
from io import BytesIO
|
||
from PIL import Image
|
||
from ds.db import db
|
||
from mysql.connector import Error as MySQLError
|
||
|
||
# 模型加载状态标记(避免重复加载)
|
||
|
||
|
||
_model_loaded = False
|
||
|
||
|
||
def load_model():
|
||
"""加载所有检测模型(仅首次调用时执行)"""
|
||
global _model_loaded
|
||
if _model_loaded:
|
||
print("模型已加载,无需重复执行")
|
||
return
|
||
|
||
# 依次加载OCR、人脸、YOLO模型
|
||
ocrLoadModel()
|
||
faceLoadModel()
|
||
yoloLoadModel()
|
||
|
||
_model_loaded = True
|
||
print("所有检测模型加载完成")
|
||
|
||
|
||
def save_db(model_type, client_ip, result):
|
||
conn = None
|
||
cursor = None
|
||
try:
|
||
# 连接数据库
|
||
conn = db.get_connection()
|
||
# 往表插入数据
|
||
cursor = conn.cursor(dictionary=True) # 返回字典格式结果
|
||
insert_query = """
|
||
INSERT INTO device_danger (client_ip, type, result)
|
||
VALUES (%s, %s, %s)
|
||
"""
|
||
cursor.execute(insert_query, (client_ip, model_type, result))
|
||
conn.commit()
|
||
except MySQLError as e:
|
||
raise Exception(f"获取设备列表失败: {str(e)}") from e
|
||
finally:
|
||
db.close_connection(conn, cursor)
|
||
|
||
|
||
|
||
def detect(client_ip, frame):
|
||
"""
|
||
执行模型检测,检测到违规时按指定格式保存图片
|
||
参数:
|
||
frame: 待检测的图像帧(OpenCV格式,numpy.ndarray类型)
|
||
返回:
|
||
(检测结果布尔值, 检测详情, 检测模型类型)
|
||
"""
|
||
# 1. YOLO检测(优先级1)
|
||
yolo_flag, yolo_result = yoloDetect(frame)
|
||
print(f"YOLO检测结果:{yolo_result}")
|
||
if yolo_flag:
|
||
save_db(model_type="yolo", client_ip=client_ip, result=numpy_array_to_base64(frame))
|
||
# if full_save_path: # 只判断完整路径是否有效(用于保存)
|
||
# cv2.imwrite(full_save_path, frame)
|
||
# # 打印时使用「显示用短路径」,符合需求格式
|
||
# print(f"✅ YOLO违规图片已保存:{display_path}")
|
||
return (True, yolo_result, "yolo")
|
||
#
|
||
# # 2. 人脸检测(优先级2)
|
||
face_flag, face_result = faceDetect(frame)
|
||
print(f"人脸检测结果:{face_result}")
|
||
if face_flag:
|
||
# 将帧转化为 base64 字符串
|
||
save_db(model_type="face", client_ip=client_ip, result=numpy_array_to_base64(frame))
|
||
return (True, face_result, "face")
|
||
|
||
# 3. OCR检测(优先级3)
|
||
ocr_flag, ocr_result = ocrDetect(frame)
|
||
print(f"OCR检测结果:{ocr_result}")
|
||
if ocr_flag:
|
||
# 解构元组,保存用完整路径,打印用短路径
|
||
save_db(model_type="ocr", client_ip=client_ip, result=ocr_result)
|
||
# if full_save_path:
|
||
# cv2.imwrite(full_save_path, frame)
|
||
# print(f"✅ OCR违规图片已保存:{display_path}")
|
||
return (True, ocr_result, "ocr")
|
||
|
||
# 4. 无违规内容(不保存图片)
|
||
print(f"❌ 未检测到任何违规内容,不保存图片")
|
||
return (False, "未检测到任何内容", "none")
|
||
|
||
|
||
def numpy_array_to_base64(arr, img_format='PNG'):
|
||
"""
|
||
将numpy数组转换为base64字符串
|
||
|
||
参数:
|
||
arr: numpy数组,通常是图像数据,形状为(height, width, channels)
|
||
img_format: 图像格式,默认为'PNG',也可以是'JPEG'等PIL支持的格式
|
||
|
||
返回:
|
||
str: 转换后的base64字符串
|
||
|
||
异常:
|
||
ValueError: 当输入不是有效的numpy数组或不支持的形状时抛出
|
||
Exception: 处理过程中出现的其他异常
|
||
"""
|
||
try:
|
||
# 检查输入是否为numpy数组
|
||
if not isinstance(arr, np.ndarray):
|
||
raise ValueError("输入必须是numpy数组")
|
||
|
||
# 处理单通道图像(灰度图)
|
||
if len(arr.shape) == 2:
|
||
arr = np.expand_dims(arr, axis=-1)
|
||
|
||
# 检查数组形状是否有效
|
||
if len(arr.shape) != 3 or arr.shape[2] not in [1, 3, 4]:
|
||
raise ValueError("numpy数组必须是形状为(height, width, channels)的图像数据,通道数应为1、3或4")
|
||
|
||
# 处理数据类型,确保是uint8类型
|
||
if arr.dtype != np.uint8:
|
||
# 归一化到0-255并转换为uint8
|
||
arr = ((arr - arr.min()) / (arr.max() - arr.min() + 1e-8) * 255).astype(np.uint8)
|
||
|
||
# 将单通道图像转换为PIL支持的模式
|
||
if arr.shape[2] == 1:
|
||
arr = arr.squeeze(axis=-1)
|
||
image = Image.fromarray(arr, mode='L') # L模式表示灰度图
|
||
elif arr.shape[2] == 3:
|
||
image = Image.fromarray(arr, mode='RGB')
|
||
else: # 4通道
|
||
image = Image.fromarray(arr, mode='RGBA')
|
||
|
||
# 将图像保存到内存缓冲区
|
||
buffer = BytesIO()
|
||
image.save(buffer, format=img_format)
|
||
|
||
# 从缓冲区读取数据并编码为base64
|
||
buffer.seek(0)
|
||
base64_str = base64.b64encode(buffer.read()).decode('utf-8')
|
||
|
||
return base64_str
|
||
|
||
except ValueError as ve:
|
||
raise ve
|
||
except Exception as e:
|
||
raise Exception(f"转换过程中发生错误: {str(e)}") |